Available online at www.sciencedirect.com —_————
sanNCE@DlRECT@ JOURI‘{“-OF.
Approximation
Theory

ELSEVIER Journal of Approximation Theory 134 (2005) 1164 —_—
www.elsevier.com/locate/jat

Three term recurrence relation modulo ideal and
orthogonality of polynomials of several variables

Dariusz Cichon, Jan StocheFranciszek Hugon Szafraniec
Instytut Matematyki, Uniwersytet Jagiellohski, ul. Reymonta 4, PL-30059 Krakéw, Poland
Received 9 December 2003; received in revised form 20 July 2004; accepted 8 December 2004

Communicated by Walter Van Assche
Available online 14 March 2005

Abstract

Orthogonality of polynomials in several variables with respect to a positive Borel measure supported
on an algebraic set is the main theme of this paper. As a step towards this goal quasi-orthogonality with
respect to a non-zero Hermitian lindanctionalis studied in detail; this occupies a substantial part of
the paper. Therefore necessary and sufficient conditions for quasi-orthogonality in terms of the three
term recurrence relation modulo a polynomial ideal are accompanied with a thorough discussion. All
this enables us to consider orthogonality in full generality. Consequently, a class of simple objects
missing so far, like spheres, is included. This makes it important to search for results on existence of
measuresepresenting orthogonality aigebraic sets; a general approach to this problem fills up the
three final sections.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

Orthogonal polynomials constitute a vital part of Analysis continuously penetrating other
areas of Mathematics and much beyond. One ofthe basic questions of theirtheoryisto decide
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whether a sequence of polynomials is orthogonal. In the caseiofgéereal variable the

most powerful characterization is given by the famous three term recurrence relation. More
precisely, orthogonality of a sequence of polynomials with respect to a linear functional

reduces immediately the linear dependence of multiplication by the independent variable
on these polynomials to a three term relation of recurrence type. The other way, that is from
the three term recurrence relation to existence of a linear functional orthogonalizing the
sequence of polynomials is established by a result which is commonly known as Favard’s
Theorem. The important feature of the single variable case is that the linear functional, if
positive, is always determined by a measure.

In theseveralvariable case the situation is much more complex. Even the meaning of the
three term recurrence relation is dubious. The very first difficulty is in finding convenient
notation (related to the order in which the orthonormalization procedure has to be performed)
which allows us to see the recurrence relation as a three term one. The pioneering attempt
in this direction was made by Kowalski9,20]. A decade later the theme was undertaken
by Xu [30-32] and independently by Gekhtman and Kalyuzhny [14,15] (see also [33,34]
for further investigations along these lines and [11] for a recent account of the theory).

Further difference is in the fact that the three term recurrence relation may not determine
any orthogonality measure though the functional orthogonality in Favard’s Theorem is still
preserved; regardless the way the relation is built up.

The three term recurrence relation considered in the references alluded to so far forces
the Zariski closure of the support of an orthogonalizing measure, provided it exists, to be
the whole spac&" (in fact, this is the only essential case in a single variable). However,
important instances, like a sphere, are left out of the game (cf. [11, p. 126]) which calls
for extending the study to cases of measures not having too massive support. Our work is
intended to get rid of this incompleteness introducing recurrence relations of matrix type
satisfied modulo an ideal.

The principal observation is that, if any orthogonality measure exists then the aforesaid
ideal consists of all polynomials vanishing on the Zariski closure of its support. The main
task is to go the other way around: given an ideal, find (necessary and) sufficient conditions
for itto admit measures representing orthogonality of a sequence of polynomials in question.
A class of ideals we distinguish for that, callieials of typeC, has the property that three
term recurrence relations modulo an ideal it induces automatically imply the existence of
orthogonalizing measures. However it is not easy to find proper tools to work on this class.
Fortunately, the class of ideals of type C contains the cases of algebraic sets of type A and
B considered in [24], which can be handled by means of functional analysis and operator
theory. This allows us to work out further properties of types A and B, and consequently
of type C as well. As a result we get that ideals composed of polynomials vanishing on
a compact algebraic set are of type C; other classes considered in this paper correspond
to some unbounded algebraic sets. Then basing on a result of [24] we indicate an implicit
example of a non-zero proper ideal which is not of type C (we do not know if the zero ideal
is of type C). In the case of such ideals we impose some extra conditions (relying on the
well know operator theory result of Nelson [21]) on the matrix coefficients appearing in the
three term recurrence relation so as to ensure the existence of orthogonalizing measures.

Implementing the programme already described we devote a substantial part of the paper
to the so-calledjuasi-orthogonality. It turns out that this notion, due to its simple algebraic
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nature, allows us to extract the most important properties (like those of Ségtfonin-
stance) of the three term recurrence relation, resulting in a number of versions of Favard’s
theorem. According to this arrangement the orthogonality with respect to a positive func-
tional follows; one of the key arguments in making it possible is to find an appropriate basis
of monomials in the quotient spa€d X+, ..., Xy1/V,V an ideal, playing the role of the
standard basis of monomials@{ X3, ..., Xy]. Needless to say that after takifg= {0}

our considerations cover those of [11].

Letus give a short summary of the paper. The initial four sections contain basic ingredients
including the notion of a rigid/-basis, wher&/ is a polynomial ideal. In the subsequent
section we formulate a variety of results on quasi-orthogonality of polynomials of several
variables with respect to a Hermitian linear functional. This culminatesin Theorem 18 which
is a far-reaching generalization of the classical Favard theorem. The miscellaneous features
of Theorem 18 are discussed in Sections 6 and 7. In particular, Proposition 26 shows that
the rank condition may be replaced by the requirement on degrees of involved polynomials,
Corollary 28 is a refinement of a result of [31], while Theorem 30 is a “complex” version
of Theorem 18. Orthogonality of polynomials of several variables with respect to a positive
definite linear functional is investigated in Section 8, with Theorem 36 as the main result.
Proposition 41 in Section 9 shows that an orthogonalizing functiooaines from a positive
Borel measure o™ only if the attached ideal; (see (43)) is a set ideal, which leads
directly to algebraic sets and the Zariski topology. Finally, the last three sections deal with
the question of existence of orthogonalizing measures. This can be affirmed by numerous
criteria, either in terms of set ideals (e.g. Theorem 43) or in terms of the matrix coefficients
in the three term recurrence relation (e.g. Theorem 56). Furthermore some open questions
are raised in Sections 10 and 11.

1. Prerequisites

Denote by cardi the cardinality of a seA. PutN = {0, 1, ...} and

i,j={keN:i<k<j} forie N and ;e NU{co}.

As usualR (resp.C) stands for the field of all real (resp. complex) numbers, and
for the Kronecker symbol. Write lid for the linear span of a subsatof a linear space.
Denote byN”" the N-fold Cartesian product d¥l by itself. Set|a| = og + - - - + a for
o= (a1,...,0n5) € NV, Let Py stand for the algebra of all polynomialsihcommuting
indeterminateX, ..., Xy with complex coefficients (iV = 1, we simply writeX instead
of X1). Members ofPy are customarily identified with complex polynomial functions on
RY. Equip the algebr&®y with the unique involutiorp — p* such thatX = X; for all
i=1,...,N.SetF* ={p*: p e F}for F C Py.Notice thatifp € Py, thenp = p* if
and only ifpis areal polynomial (i.e. all the coefficientspére real). Pultep = %(p—i—p*)
and3Imp = 2 (p — p*) for p € Py. Write Ry for the set{Rep : p € Py} which is the
ring of all real polynomials ilN commuting indeterminateX;, ..., Xy. Set

PY ={pePy:degp<k}, keN,
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Ay ={X" 0 e NV},
AT —(x* e NV, ol =k}, keN,

where deg stands for the degree of a polynomband X* = X7*... X" for all o =
(a1,...,0n) € NV, The ideal generated by a sfii, ..., p,} C Py is denoted by
(p1, ..., pn)- According to the Hilbert basis theorem, every ideaPif is generated by a
finite set of polynomials.

By amatrix polynomial(of sizem x n) we understand a polynomial with scalar matrix
coefficients (of sizen x n). In particular, we can talk of row and column polynomials.
Given a row (resp. column) polynomi@, we denote by (Q) its length(i.e. £(Q) is equal
to the number of entries @). It is clear that a matrix polynomi&l (of sizem x n) can be
identified with a polynomial matrikp; 17"_1;_1, px € P, and that under this identification
we have

degP = max{degpy :k=1,...,m, [=1,...,n}.

The matrix polynomiaP is said to beeal if all its entriespy; are real polynomials. Given
a matrix polynomialP = 3, ., A,X* with scalar matrix coefficientd,,, we set P =
> <n AzX* whereAj is the adjoint ofA,. If P is written in a polynomial matrix form
P = [puli_,l_, with py € Py, thenP* = [qu17_,", with gu = pj,; PT stands for
the transpose d®, i.e. PT = lqili_q1/~1 With iy = pi. Given p € Py and a column
polynomial Q = [q1, ..., ¢a]" With g; € Py, we set

pO =1[pqi..... panl".
Alinear functionalL : Py — Cis said to bédermitianif L(p*) = L(p) forall p € Py.
It is clear that a linear function&l on Py is Hermitian if and only ifL(X%) € R for all

« € NV, A linear functionalL on Py can also be considered as a mapping operating on
matrix polynomials via

df
L puly_qj—1) = [L(prD)li=1/=1 Pxi € Pn.
For simplicity of notation we do not indicate the dependence of the so-defined mappings
on the size of matrices. It is easily seen thdt i a Hermitian linear functional oy,
then for any matrix polynomid®

L(P*) = L(P)*.

Moreover, ifL is a linear functional orPy, P is a matrix polynomial and\, B are scalar
matrices for which the produétPB makes sense, then

L(APB) = AL(P)B and L(P")=L(P)".

As usual, kerL stands for the kernel of a linear functiomal Py — C.
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2. Monomial bases related to an ideaV/

LetV be a proper ideal ifPy. Denote byPy/V the quotient algebra (i.2y/V is the
algebra of all cosetp + V, p € Py) and bylly : Py — Py/V the quotient mapping

(i,e. Iy (p) g p + V, p € Py). It will be convenient to extend the equality modulo
the idealV to matrix polynomials. Given two matrix polynomials = [py];" 4;_; and

0 = [qul}q]_q1, We write PLQ if pry — g € V for all k, [. The following property of
“2* will be used without explicit referring to:

if PZQ, thenR P S=R QS for all matrix polynomialsR andSfor which
the productskPSandRQSmake sense.

Set

dim 11y (PY)) = 1 fork =0,
(k

dy (k) =
v {dim Iy (PY) - dim 11y (PyY) fork>1

and
ny =sup{j=0:dy(j) # 0} € NU {oo}.

Our first aim is to construct a particular (linear) basi$af/ V. composed of monomials.
Let us fix a total ordekc on N satisfying the following conditiont

if o, fe NV and |o| < |B], thena<}. 1)

We writex < in the case in which< S ando # f5. Using recursion, we define the sequence
{2 )20, of subsets ofty via:

3y =(x% and
N
sa=ix"elJx;z:
j=1
k N

myx* ¢linily | (x%u {xPel ) x5 p<a ,
i=0 j=1

whereX; 2V £ (X;p:pe 2/} Set
o
Ax = =t
k=0

1 Here is an example of a total order satisfyirlg: (x<f if and only if either|ax| < |f] or || = |f| anda
precedes with respect to the lexicographic order.
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It is clear thatZ,‘(/ - A%] for all Kk >0. However, it may happen thét,Y = J for some
k=1 (and consequentl&]}’ = Jforall j >k); for example ifV = (X1, ..., Xy) € Py,
thenz) = @.

Proposition 1. If V is a proper ideal inPy, then for every >0

(i) cardA}, nPY = cardily (4} NP,
(i) the setlTy (4}, N PY) is a basis offTy (P,
(i) ITy(AY)is abasis ofPy/ V.

Proof. SetQ = {« € NV : X* € A} }. Using induction, we show that for everye Q, the
following implication holds:

if {agtpco €C and Y aglly(XF) =0, then ay=0 forall p<o. (2
<o cQ
& gsx
SinceV # Py, (2) is valid fora = 0. Suppose that (2) holds for a fixede 2 and let
y € Q2 be the successor ofin Q. We claim thaty satisfies (2). Suppose that, contrary to
our claim,as # 0 for somed € Q, d<y. We can assume, without loss of generality, that
is the greatest element &fwith this property. Since the case« leads to a contradiction,
we must havé = y. Hence

myx = -5 2 1y (xP
v(X7) ,,Z & Tv(x’).
p<y
which contradicts the recursion definition df}(,. It follows directly from (2) that the
setIly(A)) is linearly independent and théty| ,v is injective. This implies (i) and a
part of (ii). Since (iii) is an immediate consequence of (ii), all we have to prove is that
HV(P}&]) = lin Ty (A} N 731(\’,‘]). We do it by induction ork. The casé = 0 is obvi-
ous. Suppose it is true for a fixdd>0. Takeax € NV with |a| = k + 1. Then there are
j€fl,...,Nyandp e NV such thaip| = k andX* = X;X#. By the induction hy-
pothesis,ITy (XP) e lin Iy (Uf_o Z}) and solTy (X*) € lin Iy (U X;Z}). This
shows thatlTy (A% < lin 11y (Y, U?’:l X;XY). Thus, once more by the induction
hypothesis, it is sufficient to prove that

k+1
My (Zii1) C lin Iy <U Z,V) , 3
i=0
whereEkH 4 Uj.\'zl XjZX. Suppose (3) is false. Then therevis NV such that

k+1
X" €21 and Iy (X?) ¢ lin Iy (U 2,.V> . (4)
i=0
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We can assume without loss of generality thig the least element oV satisfying (4).
This yields:

~ k+1
if X €21 and p<y, thenlly(XP)elinIly (U ziV>. (5)
i=0

By (4), we must haveX” ¢ X, ;. Thus, by the recurrence definition &%, and the
induction hypothesis, we have

k N
Oy X"y € linly (zc‘,’u xPel U x;2): p<y )

i=0 j=1

k=1 N
= lin Iy (zg vJu sziv) +lin 1Ty ((XP € Ziia: p<p))
i=0 j=1

k
ClinIly (U ZY) +lin Hv({Xﬁ IS §k+1 : ﬁ<’)/}) (6)
i=0

According to (5), the second term in (6) is contained irﬂia( Ui;’é Z,V) which leads to
Iy (x?) e lin Ty ((J25 V). This contradicts (4). O

It follows from part (ii) of Proposition 1 that the sequeﬂ@’},‘j‘;o can also be defined
by the following recursionZ} = {X°} and

N
= {X“ el x;x¢:
j=1

N
Oy (X% ¢lin Iy (731(\],‘] ulxPel x;z{ : p<u )
j=1
Proposition 2. If V is a proper ideal inPy, then for everyk >0,
cardx) = dy (k), (7)
dy(k+ j) < Ndy(k), j>0. ®)

Proof. One can deduce from Propositidr(i) that the setSHV(Z,Y)},fio are pairwise
disjoint and that card} = cardIIy (X)) for all k>0. This and the condition (ii) of
Proposition 1 imply cardc‘,’ =1=4dy(0) and

k k-1
cardz) = cardITy <U Z,") \ITy (U 2}’)

i=0 i=0

=dim Ty (P¥) — dim 1y (PYY), k>1.

Assertion (8) follows from inclusions},; < U, X, 2, k>0. O
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3. V-bases

LetV be a proper ideal ifPy, F be a linear subspace &fy andB be a subset oPy .
The setB is said to bdinearly V-independent, ifly (B) is a linearly independent subset
of Py/V andIly|p is injective. We say thaF is alinear V-spanof B, if B € F and
Iy (F) = lin IIy(B). Finally, B is said to be a (linearty-basisof F, if B is linearly V-
independent anH is a lineaV-span oB. Clearly,B is aV-basis of- if and only if B C F,
Iy (B) is a basis offy (F) andIly|p is injective. It is obvious that evey-basis ofF is
at most countable. We say that a sequeigg_, (0<n < oo) of column? polynomials is
acolumn representatioaf a non-empty subs&of Py if every element oB is an entry of
exactly one columry; and for everyk € 0, n, entries ofY; are pairwise distinct elements
of B. It will be convenient to identif{/-bases with their column representations. Namely,
a sequenceéyy };_, of column polynomials is called 4-basisof F if {Y;};_ is a column
representation of &-basis ofF. Likewise, we define thénear V-independencand the
linear V-spanof a sequence of column polynomials.

The proof of the following fact is left to the reader. Notice that (ii) implies fat;_,
is a column representation of a subsef?af. A sequencgA;};_, of (scalar) matrices is
said to bdfinite, if cardk : Ay # 0} < oo.

Lemma 3. LetV be a proper ideal ifPy, F be a linear subspace @y and m be a positive
integer. If{Y;};_, (0<n<o0) is a sequence of column polynomials with entries ithEn
the following conditions are equivalent:

(i) {Yi};_ois aV-basis of Kresp.{Y;};_ is linearly V-independeit
(i) for every column polynomial P of length m with entries intlkere exists a unique
(resp.at most onefinite sequencgA;};_, of scalar matrices with m rows such that

\%
P= ZZ=0 ArYe.

By Proposition2, for everyk € 0, xy, Z,Y is a non-empty subset of%]. Depending
on the context in whichS,‘(/ appears, it is convenient to regard it either as a set or as a
column polynomial (the same convention applies to other column sequences considered in
this paper). In the latter case, entries of the colufjinare arranged in accordance with the
lexicographical ordering (the length of the colurﬁb is equal taly (k)). By Propositions 1
and 2,{2,‘(’},20 is aV-basis ofPy which satisfies the following two conditions for every
keO ny:

{ZV1k_, is aV-basis ofP ), )

N
Sac U x5z (herex) andx},, are interpreted as sets). (10)
j=1

We shall show by means @E,Y}fio that the numbergy (k), k € N, determine the ideal
Vin a sense.

2 Columns are assumed to be finite and to have at least one entry.
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Proposition 4. If V1 and V, are proper ideals inPy such thatVy € V> anddy, (k) =
dy,(k) for all k € N, thenVy = Va.

Proof. Sincedy, = dy,, we obtainty, = »y,. Setx 4 nyy.

We claim that for every € 0, x, {Z,‘(/2 Yi—o is aVi-basis ofP](\}”. SinceVy C V5, one can
deduce from Lemma and (9) tha(Z,YZ}ZZO is linearly V1-independent. It follows from (7)
that

cardXy? + - -+ cardZY? = dy,(0) + - - - + dy,(n) = dy,(0) + - - - + dy, (n)
=dim Iy, (Py)),

which, together with dengZ = k, implies our claim.

Since{Z,Yl}Lo is a Vi-basis of Py, we conclude that for every € Py, there exists
g € Py such that deg <« and p 4 g. This and the previous paragraph imply that
{ZZZ}LO is a Vi-basis of Py. Finally, the equalityV; = V> is a direct consequence of
the following general fact: for any two proper idedfs € V> C Py, if there exists a
linearly Vo-independent se8 € Py which is simultaneously &;-basis ofPy (in our case
B=U{o 2% thenvi =V, O

In the following lemma we indicate a column relation betwegn, andx .

Lemma 5. If V is a proper ideal inPy, then for everyk € 1, »y, there exists a column
polynomialR; and an injective scalar matrix; such that
Xlzlyfl
: M + R and degR; < k. (11)
XN,

The matrixM;, appearing in(11)is unique.

Proof. It follows from (9) and Lemma 3 that there exists a column polynomjahnd a
unigue scalar matrin/; which satisfy (11). Since, by (10), all the entries of the column
3! appear among entries of columkisX} ,,..., Xy} ;, we conclude that the matrix
M; contains rows1,0,...,0],[0,1,0,...,0], ..., [0,...,0, 1]. As a consequence; is
injective. [

The next result relates sorivebases ofPy to the canonica‘V—basisAI‘(,.

Proposition 6. LetV be a proper ideal irPy and{Qk}Zio be a column representation of
a non-empty subset B &fy such that

0r S Py, kel ny. (12)
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Then the following conditions are equivalent

(i) Bislinearly V-independent and for evere 0O, xy, the length ofQ;, is equal tady (k),
(iiy foreveryk € 0, ny, BN 7?](\;‘] is a V-basis oﬂ?}é‘] and

Or € {p € Py : degp =k}, (13)

(i) for everyk € 0O, ny, there exists a non-singular scalar matiix, and a column poly-
nomial Ry such thatQ; =G X} + Ry anddegR; < k.

Moreover,if (i) holds,then{Q};" is a V-basis oPy.

Proof. (i)=(ii) Fix k € 0, ny. By (12), we have
cardB NPy >0(Q0) + -+ £(Q) = dy () + - - +dy (k) = dim Iy (PY).

Since the seB N P}\ﬁ‘] is linearlyV-independent, we conclude than P}\ﬁ‘] is aV-basis of
P* and
N

cardB N PW = €(Qo) + - - + £(Qx) = dim Iy (PL)). (14)

We now prove (13). By (12), (13) holds fér= 0. Suppose that, contrary to our claim,
there arek € N such thatt + 1<xy, andp € Q41 such that degp # k + 1. Then, by
(12), degp <k. Hencep € (B N Pf\f') \ Uf-(:o Q; and, in consequence, caBdn P,(\f‘] >
2(Qo) + - - - + £(Qr) which contradicts (14).

(ii)=>(iii) It follows from (13) that BN P! = | J¥_, ©: and consequently thag; }*_ is
aV-basis 0173}8‘] forall k € 0, xy. This enables us to show that capg = dy (k) forall k €
0. %y. Fixk € 0, xy. Applying (9) and Lemma 3t&; = XV,i =0,..., k, andF = P},
we find a square scalar matitx, and a column polynomiat; such thaleéGkZ,‘(’ + Ry
and degR; < k. Likewise, applying Lemma 3t%;, = Q;,i =0, ...,k, andF = Pf\f],
we find a square scalar matii¥, and a column polynomiak; such tharZ,‘c’iG; Qr+ Ry
and degj, < k. Since Q;=GX) + Ry, we getX} = (G,Gy) X} + (G, R + R}) and
deg(G, R + R;) < k. Hence, once more by (9) and Lemma 3 applied’to= Z,V,
i=0,...,s,andF = P}\f] withs =k — 1, k, we see thaG;ch is the identity matrix.

(iii)=(i) Notice that for everyk € 0, xy, £(Qx) = dy (k) (becauserinZ,‘(/ + Ry,
E(Z,Y) = dy (k) andGy, is a square matrix) and

k
if A; are scalar rows such that A; Q,éo, thenA; =0fori =0, ..., k. (15)
i=0
The proof of (15) is by induction dn The casé = O is easily seento be true. Suppose (15) is
valid for a fixed integer & k < »y, andy_""3 A; 0, =0. Sincer+1¥Gk+1Z,f+l+Rk+l,

we getAk+1Gk+1Z,Y+1 + R,/CHLO for somer,; , Pﬂ‘] (use (12)). Hence, by (9) and
Lemma 3 appliedtd; = XY,i =0,...,s,andF = 73](5] with s = k, k + 1, we conclude
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thatA;+1Gr+1 = 0, which, together with the non-singularity 6., 1, gives usd; 1 = 0.
This proves (15), which in turn implies the line&independence @ (cf. Lemma 3).

To prove the last assertion of Proposition 6, we have to showRRats a linearV-
span of{Qk},fLO provided (i) holds. By Propositions 1 and 2y is a linearV-span of
{ZJY}:io- Hence, it is sufficient to prove that for eveky € 0O, ny, HV(ULO Z,V) C
lin Uv(Uf-‘zo 0;). We proceed by induction ok. The cas& = 0 is obvious. Suppose
the induction hypothesis is true for a fixed intege€® < »y. It follows from (jii) that
2V =G Oks1 — Gy Ris1. Since deds 1 R+1 <k, we infer from (9) that there are
scalar matriceg, ..., A; such that

k
=G Qe+ ) A
i=0
which by the induction hypothesis completes the proafl

Remark 7. Itis worthwhile to point out the role played by (13) in Proposition 6. Suppose
thatxy >2 anddy (j)>2 for some & j < ny (e.g.V = {0} € P»). We know that
{217, satisfies condition (i) of Proposition 6 (with = A)). SetQ, = X} for all

k # j, j +1. Remove an entrg from Z)’ and denote the so-obtained column@®y. Next
attachpto the columri}’+1 (as an extra entry) and denote the so-obtained colun@hy.

Then for every € 0, ny, P,(\f' N U, Ok is av-basis ofPf\f'. However{ Q4 };, does not
satisfy (13). In other words, condition (13) distinguishes column representations of a given
V-basis ofPy in which the index of each column coincides with the degree of every entry
of this column.

We conclude this section with a (relatively) simple method of produitgses ofPy
satisfying the assumptions of Proposition 6.

Proposition 8. Let V be a proper ideal iPy and let C be a subset ¢?y such that
linCn P}é‘] = 731(\?] for every integek > 0. If the setB Lc \ Vis linearly V-independent,
then B has a column representatic{)Qk}Zio which satisfies conditiongl2) and (i) of

Proposition6.

Proof. Since the seB N 731(\;‘] is linearlyV-independent and

Iy Py =lin Iy (€ NPy =lin Ty (B NPy,
we conclude that for every integee> 0, the setB N Pf\;‘] is aV-basis ofPlg‘]. This in turn
implies that car@lp € B : degp = 0} = cardB N 731(\9] =dy(0) and

cardp € B : degp = k} = cardB N ij] —cardB N 7?1(\;‘_1] =dy(k), k=1.

Arranging members of the sgp € B : degp = k} in a columnQy, of lengthdy (k) (in an
arbitrary way), we get the required column representat@y;”” , of B.
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4. Rigid V-bases

LetV be a proper ideal ifPy. A sequencePk}:io of column polynomials is said to be
arigid V-basisof Py, if {Pk}}fio is a column representation of\abasis ofPy such that
for everyk € 0, ny, P, C Pl(\i‘] and{(Py) = dy (k). If V. = {0}, we call it simply arigid
basisof Py; notice thatt;g) = oo and

k+N-1

dioy (k) = cardo € NV : |o| = k} = ( L

). x=0

If {Pk}ZLo is a rigidV-basis ofPy, then, by Propositions, for everyk € 0, xy, Ufzo p;
is aV-basis 01731(\;‘] and the degree of each membeRpfis equal tck. Moreover, if{ P}
and{Qx}Y, are rigidV-basis ofPy and{JY, P; = U/, Qi. then for everyk € 0, ny,
the columnsP, and Qy are identical up to an arrangement of entries.

It is possible to construct@-basisB of Py, hone of whose column representations is a
rigid V-basis ofPy. What is moreB may be chosen so thedegp : p € B} is an arbitrary
cofinal subset 00, »y (“cofinal” means that for every € 0, xy there existy € B such
that degp > k). This can be done with the help of the following auxiliary fact applied to
C= U,‘:LO Z,f (appropriately partitioned): if a badisof a complex vector spaceis equal
to the unionJ,,.o Co, Of pairwise disjoint non-empty subsets©f andv,, € C,, for all
o € Q, then the set€, + vy, ® € Q, are pairwise disjoint anfl) .o (Co) + vo) is @
basis ofF. In particular, ifry < oo, then it is possible to find ¥-basis ofPy composed
of polynomials of degreey .

Owing to (9), the sequenc{é?,‘(’},fio defined in Section 2 is a rigid-basis ofPy . Hence,
if P is a column polynomial, then, by Lemma 3, there exists a unique finite sequence
{Di )Y, of scalar matrices such thats o Dy XY ; the scalar matriX)y is called the
kth coefficienbf P (relative toV) and is denoted b¥[;. For simplicity of notation, we do
not indicate the dependence Byf; on the ideaV; this will cause no confusion.

The following fact derived from Proposition 6 is a useful criterion for rigiditiwetbases.

Proposition 9. LetV be a proper ideal ifPy. A sequencer}Zio of column polynomials
is arigid V-basis ofPy if and only if the following two conditions hold for every 0, xy:

(a) degy <k for every entry q oDy;
(b) there exists a non-singular scalar matri, and a column polynomiak; such that

01=GX) + Ry anddegR; < k.

Proof. The “only if” part of the conclusion is an immediate consequence of Proposition
A careful inspection of the proof of the implication (iii)=(i) in Proposition 6 shows that
conditions (a) and (b) imply (15). This, when combined with Lemma 3, implieg QI@IZLO
isacolumnrepresentation of a lineavyindependent set. Applying Proposition 6 completes
the proof. O



D. Cichon et al. / Journal of Approximation Theory 134 (2005) 11—-64 23

As is shown below every rigitf-basis ofPy may be enlarged by members\oo as to
get a rigid basis oPy .

Proposition 10. Let V be a proper ideal irPy. Then there exists a sequend };° , of
(possibly emptydubsets of V such that for every rigid V—ba{s@},flo of Py, the sequence
{Pi )72 of column polynomials defined By

QrUT, forkeO, ny,
P, = 16
k { Tk for k > ny, (16)

is a rigid basis ofPy.

Remark 11. Notice that, if{Qk},fLO is a rigidV-basis ofPy and{7;};2, is a sequence of
subsets oV such that{ P };2 , defined by (16) is a rigid basis @y, then for every >0,

T C {p € V : degp = k} and|J_, T; is a basis o N P,

Proof of Proposition 10. Since{V N Pf\f]},‘g‘;o is an increasing sequence of linear spaces,
there exists a sequen¢g};°, of subsets ol such that for everyk >0, ULo T; is a
basis ofV N P,(f' andTi11 N Uf.‘:o T; = J (use recursion beginning withy = J as
vn 79;\?] = {0}). Clearly, we havd}, C {p € V : degp = k} for everyk >0. Notice that
Ty # @ for everyk > xy. Indeed, otherwis@, = & for somek > xy. Leto € NV be
such thata| = k. Since{2} }", is arigidV-basis ofPy, there exists a sequeng®;}’", of
scalar rows such that* — Y%, D;x) e vn Py =lin (J*2¢ 73, which is impossible.
We claim thaf{ 7} };° , is the required sequence. First we show {2, is linearly in-
dependent. Lefly;}jcs S UZio Ok and{rj}jex < Ugeo Tk be finite systems of pairwise
distinct polynomials such that

Zajq]‘—i-ijthO, a7)

jeJ jeK
where {a;};c; and {b;};cx are finite sequences of complex numbers. Then clearly
;s @jq;=0, which impliesa; = 0 for all j € J. By (17), we gety_, _x bjt; = 0,
and consequently; = 0 for all j € K. Hence{ P }72 , is linearly independent.

If p e Pf\f] (k>=0), then by rigidity of thé\/—basis{Qj};‘Lo there exist finite systems
{gj}jes € Uiz Qi and{aj}je; C Csuchthap — 3. ; ajq; €V NP, wheres £
min{k, xv}. Sincev N Py = lin %, 7}, there exist finite syster(s;}jex € Uf_o T
and{b;}jex < Csuchthatp =3 ., ajq; + > ;cx bjtj. This shows thaP{ is the
linear span otPj}’]?ZO. Hence{Pj}’;:0 is a basis o\ for everyk e N, and consequently
[P}, is arigid basis ofPy. [

3 Entries of each columi®;, are distinct andD; is a subcolumn of; for everyi € 0, xy .
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5. Quasi-orthogonality: the real case

In this section we focus attention on the relationship between the quasi-orthogonality
with respect to a linear functiondl : Py — C and the three term relations modulo a
x-ideal inPy (recall that an idedV in Py is said to be a-ideal, if p* € V forall p € V).

A sequencd Qi };_ (0<n <oo) of column polynomials is said to bguasi-orthogonal
with respect td_ if L(Q; Q%) =0foralli # j.

Given a non-empty suﬁsétof N and a systemiQy ey Of column polynomials, we
say that{Qy}res is selectedfrom a sequencéPy}; , of column polynomials (briefly:
{Orkes < Pr2) if for every k € J, the columnQy is made up ofP; by removing
some entries oP; and leaving the remainder in the order inherited frBmGiven a linear
functionalL : Py — C, we define the set

V= () {p €Py:Lipg) =0}
q€Pn

It is clear thatV,, is an ideal inPy such thaty, C ker L. The latter inclusion and the
definition of V;, imply thatV, is the greatest ideal contained in key and thaty; is a
proper ideal if and only it is non-zero. IfL is a Hermitian linear functional, they, is

a x-ideal. Examplel2 shows thal’; may bex-ideal, thoughL is not a non-zero scalar
multiple of a Hermitian linear functional.

Example 12. Let u be a positive Borel measure @' . Assume that the closed support
suppu of u is compact and it has a non-empty interior. Take two linearly independent
polynomialsg4, @, € Ry. Setyp = ¢4 + ¢, and

L(p)= /RN @pdu, pePy.

ThenV, = {0} (which, of course, is a-ideal). Indeed, ifp € V., thenp = p1 + ip2,
wherep1, p2 € Ry, and

0=L(pg) = /RN (P1P1 — @2p2)q dp + i /RN (p2p1+ @1p2)q du

for everyqg € Ry. Using the non-emptiness of the interior of sypand the uniqueness
theorem for polynomials, we get; p1 = ¢,p2 ande,p1 = —¢@4p2. This in turn implies
thatqol(pz(pf + p%) = 0. Since the polynomialg; and ¢, are linearly independent, the
producte, ¢, is non-zero, and consequenﬁ§+ p% = 0. Hencep = 0, which means that
Vi = {0}

Suppose that, contrary to our claim, there exists a non-zero complex ngraber iy
with x, y € R such thatzL is Hermitian. Then for any € Ry, we havezL(p) = zL(p),
which gives uszN (x@,+ yoq) p du = 0. Arguing as in the previous paragraph, we show
thatx o, + yp, = 0, which contradicts the linear independencegfando,.

Proposition 13. Let { P}, be a rigid basis ofPy and L : Py — C be a linear
functional such thatL(P,-P;) = Oforalli # j.IfV Ly isa proper x-ideal,
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then

(i) the rank of the matrix. (P P}) is equal tody (k) for every integek > 0;

(i) if {Qktkes <L P}, thenUye, QO is a V-basis ofPy if and only if/ = 0, »y and
L(QxQ3) is a non-singulardy (k) x dy (k)-matrix for everyk e J; moreoverthere
always exists such a V-basisBf;;

(i) every V-basisf.Qk},fLO of Py selected from P} 2, is rigid;

(iv) if {Qk} L, is a V-basis ofPy selected from{ P }22,, then for everyk € O, xy, there
exists gunique)systemiy 1, ..., Ak.n, Bk.1s - - -» BN, Ck 1, - - ., Cky Of scalar ma-
trices such that
(iv-a) X;Qr=ArOrs1+Bi;Qi+CijOr 1forall j=1,..., N,whereCo; £ 1

andQ_1 a 0;if uy < oo, thenA,, ; a4 [1,..., 1T with the number of entries
equal to the length o), and Q, 11 < 0,
(iv-b) the matrices{A;l, e A,*;N]* and[Cg.1, ..., Ck,y] are of maximal rank.

Proof. We first show that for every column polynomiaf,
W=0 ifand only if L(WPJT") =0 forevery integer >0. (18)

The “only if” part is obvious. SupposE(WP]’.“) = 0forall j >0. Since{P;}°, is a basis
of Py, Lemma3 yieldsL(W Q*) = 0 for every column polynomidD (of arbitrary length).
This impliesW=0 becaus&’ =V .

Next we prove that

for every integek >0, L(PP}) =0 ifandonlyif k> xny. (29)

If L(PP;) = 0, then by the quasi-orthogonality assumptIo(rPkP;.*) =0 forall j >0.
Hence, by (18), we havHy (P;) = 0, which in turn implies ‘

dy (k) =dim ITy (P — dim 11, (P

k k—1
=dim lin | J ITv(P)) —dim lin | J ITy(P,) =0 providedk>1.
i=0 i=0

Thismeansthat > «y (the casé = 0 never happens, because-Xy (0) = dim HV(Pf\?])

= dim lin ITy (Pp)). Conversely, ifk > »y, then by Lemma 3 and Propositions 1 and
2 there are scalar matricksEy, . .., E,, and Fo, ..., Fy, such thatP,= Z?LO EjZ).’
and} 7Yy E; XY = 37V, FjP; (becausg P}, is arigid basis ofPy), which yields
L(PePY) = XY FL(P;PE) = 0.

(iii) Let {Qk}zﬁo be aV-basis ofPy selected from{ P };°,. By Lemma 3, for every
k € 0, ny, there exists a unique finite sequemm,j}}‘io of scalar matrices such that

A
P= Z;O Dy jQj- (20)

4 For simplicity, we suppress the explicit dependenc&0énd F; onkin the notation.
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We first show that
the matrixL(Qy Q5) is non-singular for every € 0, »y. (22)

Indeed, otherwisé (Qy Q5) is singular for some sudh Then there exists a scalar ray #
0 of appropriate length such thatL (Qx 07) = 0. By the quasi-orthogonality assumption,
we haveL (ay QkPJ?‘) = akL(QkP;.“) = O0forall j € N\ {k}. SinceV is ax-ideal, we infer

from (20) thatL (ax Qi P;}) = axL(Qx QZ)D;;,,( = 0. By (18),ax Qkéo, which contradicts
the linearV-independence qu,-}l’Zo. This proves (21). Next we show that

Pi=DixQk, k€0 ny. (22)
Indeed, it follows from (20) and the quasi-orthogonality assumption that
0= L(PQ}) = DriL(Qi0}), i€0,uy\{k}.

Since L(Q; Q}) is non-singular, we geby; = 0 for alli € 0,xy \ {k}. This and (20)
yield (22). SetB = U;‘:VO Q;. Since{P;}° is a rigid basis ofPy, we infer from (22) that
BN 73](\’,‘] =, 0:isaV-basis ofP](\',‘] for everyk e 0, xy. By part (i) of Proposition 6,
{0k }Y, is arigidV-basis ofPy.

(i) & (ii) Since Py is the linear span dfP}72 , there exists a syste(@i }res <{ Pilio o
suchthat J,., Qx is aV-basis ofPy. Let now{Qy}rc,s be any such system. We first show
that0, »y € J. Suppose that, contrary to our claim, there exists0, xy \ J. We know
that there exists a finite systef®;};c,; of scalar matrices such thag, = > jes DjQj.
This andk ¢ J give USL(PiP;) = Zjej D;L(Q;P}) = 0, which contradicts (19).
Suppose now that € J andk > »y. Then, by (19),L(QkPJ’.“) = 0 for all integers

j=0. Applying (18), we obtaianLO, which contradicts the linear-independence of
{Qi}ies. This means thal = 0, xy. According to (iii), { Ok }xes is a rigidV-basis ofPy.
Therefore, by (21), for every € J, L(Qx Qj) is a non-singulaly (k) x dy (k)-submatrix
of L(PP}) (becausdQ;}ics<{Pi};2p). This implies thatdy (k) <rank L(Py P;’) for all
k e J. It follows from (22) that for everyk € J, L(PyP}) = Dy L(Q«P;), and so
rank L(Py P;") < rank Dy ;. <dy (k) (becauseD,  hasdy (k) columns). This and (19) give
us rankL (P P;") = dy (k) for all k € N. Summarizing, we have proved (i) and the “only
if” part of (ii).

Suppose now thaltQr};Y o< { Pr}52, is such that for everg € 0, %y, L(QxQ}) is a
non-singulardy (k) x dy (k)-matrix. By our assumption, we have

L(Q,-Qj.) =0 foralli, j € 0, %y suchthat # j. (23)

Fixn € 0, ny. Suppose thabs, ..., D, are scalar rows such that’_o D; Qjéo. Multi-
plying both sides of the equality iy; and applyind. to the result we geb; L(Qx QF) = 0,
and soD;, = 0fork =0, ..., n. Hence, the sequen¢@k},fio is linearlyV-independent.
By part (i) of Propositiors, {Qk}/fio is a rigidV-basis ofPy.

(iv) Let {Qk},fio be av-basis ofPy selected fron§ P };° . Fix j € {1, ..., N}. Consider
first the casety = oo. By (iii) and Lemma 3, for everg € 0, ny, there exists a unique
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system of scalar matriceiég‘), ce, D,E’fﬁl (for simplicity of notation, we do not make its
dependence opnexplicit) such that
k+1
v k
x;0=Y_ 0. (24)
i=0

SinceV is ax-ideal, we infer from (23) and (24) (with = [) that

I+1
L(X;0x07) = L(Qk(X;00") = > L(Qx0))(D{")* =0

i=0
forall k, ! € O, vy such thak >1 + 2. This, when combined witi2@) and (24), leads to

k+1
0=L(X;0:0) =Y DMLWQ:i0}) =DV L0}
i=0
forallk,l € 0, ny such thak >/ + 2. Since, by (i), the matrix.(Q; Q;) is non-singular,

we getDl(k) = Oforallk,l € 0, ny such that >/ + 2. This and 24) imply (iv-a). The
casexy < oo can be handled in much the same way (with special cark foy ).
Fix an integer G{k < »y and rewrite condition (iv-a) in the column form

X210k A1 By1 Cr,1
v
o= Gkt | Okt 0 | Okt (25)
Xy Ok Ak.N By N Ck.N

By part (iii) of Proposition6 and Lemma 5, thek + 1)th coefficienP of the column
polynomial (relative td/) appearing on the left-hand side of (25) is equal to

Gy 0 .-~ 0 Xlzg G, 0 --- 0

0 G --- 0 X2} 0 G --- 0 Iy (26)
. . . = . .. . k+1,

0 0 --- Gy XNZ]Y (k+1] 0 0 --- Gy

while the(k + 1)th coefficient of the right-hand side is equal to

A1
Giy1, (27)
Ak,N

whereG andGy.1 are as in part (iii) of PropositioBandMy. 1 is asin Lemma 5. Since the
right-hand side of (26) coincides with (27), the matricgsandGy_ 1 are invertible and the
matrix My 1 is injective, we conclude that the mat[iA;l, e AZ,N]* is injective and that
its rank is equal tdy (k+1). If vy < oo andk = ny, then[A,tyl, e A,’;N]* =[1,...,1]
with Ndy (k) entries.

5 See Sectiod for its definition.
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We prove that the rank diCy 1, ..., Ck.n] is maximal. The case = 0O is trivial (be-
cause[Co 1, ..., Con] = [1,...,1]). Fix an integer & k < wy. Substituting the three
term representations (given by (iv-a)) of columkisQ;1 and X; Q; into the equality
Ok(XjOr+1)* = (X;0k) Q)4 (recall thatV is a x-ideal), then letting the functional
L act on both sides of it and simultaneously applyivigC ker L and (23), we get
L(QkQ;’;)C;(“H’j = Ak jL(Qr+10Q5y) forall j =1,..., N. This implies

L(QkQ) 0 ... 0 Ciy11 A1

0 L@ ... O Cii12 Ak.2
. . : : =| . |L(Qk+1Qp41)- (28)

0 0 . (@) | LCian Ag,N
By the injectivity of[Af ,, ..., A} y]* and the non-singularity af (Qk+10j, 1), we infer
from (28) that the matriXCyy1.1, - . . , Ck+1,51" iSinjective. Hence the matrpCry1.1, - . .,

Cr+1,n]1s of maximal rank. [J

Remark 14. Let us clarify the circumstances in which Hermitian linear functionals may
appear in Propositioh3.

(a) How to select &-basig Qk},flo of Py from { P }72 5, where{ P22, is as in Proposi-
tion 137 If all the scalar matricds( Py P;) are symmetric (which is the case for a Hermitian
L), then the answer is: fik € 0, xy, choosely (k) entries ofP; and arrange them in a col-
umn Q) taking account of the order inherited fraPy; if the rank of the matrix.(Qy P’) is
maximal, thenL (Qy Q7)) is a non-singulady (k) x dy (k)-matrix (this is because the matrix
L(P P) is symmetric, its submatrix (Qy P;) is of maximal rank and rank (P P;") =
rank L(Qy P;")). Hence, by part (i) of Proposition 13Qk},‘fio is aV-basis ofPy selected
from {P;}72 . In fact, due to Proposition 13, all-bases ofPy selected fron{ P };2, can
be obtained this way.

(b) If {Pi}72, is a basis of Py consisting of real column polynomial®y € R and
L : Py — Cis alinear functional such that (Pg) € R and L(P; P]’.“) = Oforalli # j,
then L is Hermitian(cf. Corollary 23, Lemma 29 and Proposition 32 for other criterions
for L to be Hermitian). Indeed, taking € Py, we infer from Lemma 3 that there exists
a finite sequence of scalar roW®}°, such thatp = Y2, Dy Py. Since entries of
Py are real, we obtaip* = Y 2, PkT Dj. By the quasi-orthogonality assumption, we
haveL (Py) = PigL(PkPg) = 0 for all k >1. As a consequencé,(p) = DoL(Pp) while

L(p*) = L(Po) Do, which means thak (p*) = L(p).

Example 15. The statement converse to part (b) of Rembdkis not true. Namely, there
exists a Hermitian linear functionalonPy for which there is no basigP; }7° ; of Py such
that Py € C andL(P; P]?‘) = Oforalli # j. The functional defined byL (p) = d—f(O) for

p € P1 has the desired properties. Indeed, if there existed a bBgig’ , as above, then
we would have.(P;) = 0 for allk € N (by the definition ol and the quasi-orthogonality
of { P}72 ), Which would implyL = 0, a contradiction.
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Examplel5 (as well as the whole Section 5) raises an interesting question when there
exists a sequence of column polynomials which is quasi-orthogonal with respect to a given
non-zero Hermitian linear function&l and which is a rigid/, -basis. Our answer to the
question generalizes[11, Theorem 3.1.6] (see also [10, Theorem 1.3.1] for the single variable
case). Given a-idealV in Py, we set

Xy
= S|, keO,my. (29)
5y

[89]

<

Proposition 16. Let L : Py — C be a non-zero Hermitian linear functional and let
V = V. Then the following conditions are equivalent:

(i) there exists a rigid V—basimk},‘flo of Py composed of real column polynomials such
thatL(Q,-ij) =O0foralli # j;
(ii) there exists arigid V—basi{st}ZLo of Py such thatL(Qin.) =O0foralli # j;
(iii) the matrixL(Z} (£})*) is non-singular for every € 0, xy;
(iv) rank L(S,{{O} (E,{COJ)*) =dy(0) + - - - + dy (k) for every integek > 0.

Proof. The implication (i)=(ii) is trivial.
(iiy=(iii) Fix k € 0, »y. That the matrixL(Z} (£})*) = [L(Z} (ZJ.V)*)]f.i i—o is non-
singular will follow provided we show that the ensuing matrix equation

LEGEG") .. Ly )"

[Dr.0,---» Dixl : : =1[0,...,0], (30)
LEYEHY o LEED

has only the zero solutidiDy o, . . ., D], whereDy ; is a scalady (k) x dy (j)-matrix
for j =0,..., k. SetP, = Dy Xy +---+ D2} . By Lemma3 and (9), it now suffices
to verify that P¢=0. It follows from (30) thatL(Pk(Z}/)*) = O forall j € 0,%. Since
P(k] is the linearV-span of{ZV}"_0 andV is a x-ideal contained in keL, we see that
L(PkQ )y =0forallj € 0,k. HoweverL(PkQ )y=O0forallj >k (becauséDN is a
IlnearV -span oi{Q, _o V S ker LandL(Q; Q ) = 0foralli # j). Employing the fact
that{Qj} Loisav- ba5|s ofPy as well as the equallty’L = V, we conclude thaP;=0.

(|||):>(|)S|nceL|s Hermitian, we havé (Z) (£}))* = L(Z} (E{)*) = L(E} (E{)MT.
Hence the matrixX. () (2} )*) is real. By the non-singularity dff(”V(:,‘c’) ), for eachk €
1, %y, there exists a unique system of real scalar matrigg, . . . , Dy, such that

LEFEHH L(zvak D LEFEDH Do 0
: ' : =1 (31)
0

LY &5 . LE) 1<2V D LEED || Dlga
LEYEH* ... L(ZV@k DY LY EhHn Dl 1
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where the matrixD; ; is of sizedy (k) x dy(j) andl stands for the identity matrix of size
dy (k) x dy (k). For k € W, we define the real column polynomi@y = Dy oX§ +

-+ D2} with Doo £ 1. SinceDj ; = D], we infer from (31) thaL(Z}’ Q) = 0for
all j € 0,k — 1, which |mpI|esL(QJQk) = 0forall j € 0,k — 1. Taking transpose and
usmgQ* = QT we getL(QQ ) =0forall j € 0,k — 1. Summarizing, we have proved
thatL(Q,Q )y = 0 for alli # j. It follows from the definition that de@; <k. Owing to
Proposmon 9, it suffices to show that the matfi x is non-singular. Smc@o o=1,we
can assume that > 0. If aiis a scalar column of lengttiy (k) ande’ka = 0, then, by
(31), we have

L(zg(zg)*) e LEYE DY D] ga 0

LY l(zV)) oLy l(zk D9 ] L Dliqa 0

However, the matrix. (Z{_,(Z;_;)*) is non-singular, and hena ja = 0, ...,D], _ja =
0. This, when combined with (31), leadsda= 0.

(i) < (iv) Suppose thaky = oo and fixk € N. Since{Z"}o<> o is arigidV-basis ofPy,
there exists a scalar matri, such thaC{O} =EZ} . This and the fact that (Z) (£)*)
is a submatrix 01'7;(”{O (:{0})*) give us

rank L(Z) (E})*) < rankL(Ez{cO}(Ez{CO})*)
= rank Ex L(E} (5{)") Ef <rank L(Z{ (E})").

SinceL(: (:,Y) ) is a square matrix of dimensiafy (0) + - - - + dy (k), the equivalence
of (iii) and (iv) follows.

If vy < oo andk > wuy, then a similar reasoning shows tfﬂ,f}_Ek with an
appropriate scalar matrik;, and in consequence

rank L(Z{7 (E17)*) = rankL(Z}, (EY )*),

which together withiy (1) = 0 for/ > »y completes the proof. [J

Remark 17. Notice that if we drop the assumption thats Hermitian supposing instead
thatV =V, is ax-ideal, then conditions (i), (ii) and (iii) of Propositidré remain equivalent
provided (jii) is strengthened biy(Z) (£} )*) = L(Z) (£} )*)* for k € 0, »y. Indeed, the
proof of (if)=>(iii) works under the assumption = V*, while the proof of (iii)=(i) remains
valid providedL(Z) (£} )*) = L(E) (E})*)* for k € O, ny.

One may obtain yet another version of Proposition 16ig assumed to be an arbitrary
linear functional withY, # Px. Then conditions (ii), (ii) and (iv) are still equivalent
whenever taking adjoint*) is replaced by transposing).

We are nowin a position to formulate a version of Favard’s theorem for quasi-orthogonality
of polynomials of several variables with respect to a Hermitian linear functional
onPy.
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Theorem 18. Let V be a propek-ideal in Py, L : Py — C be a linear functional and
{01} _o (0<n < o0) be asequence of real column polynomials suchghat 0. Consider
the following two conditions:

(A) {Qk};_ois arigid V-basis ofPy, L(Q; ij) =O0foralli # j,andV =V;
(B) nh: »y and there exists a systefi¥y ;, B ;, Ck,j]},‘fioy:l of scalar matrices such
that
(B-i) X; QkéAk,ij+l + B, j Ok + Ck,j Ok forall j € 1, N andk € O, ny,
where Co L 1 and 01 a 0;if vy < oo, thenA,, ; a [a,...,1F with
U(Any.j) = £(Qx) @Nd Oy 41 = O,
(B-ii) the length ofQy is less than or equal tdy (k) for everyk € 0, ny,
(B-iii) degQy <k for everyk € 0, ny,
(B-iv) the matrix[Cy 1, ..., Ck.n1is of maximal rank for everf € 0, xy.

Then

(@) (B-i), (B-ii) and (B-iii) imply that the matri{Aj 4, ..., A; y1" is injective for every
keO0,ny, {Q./'}?:o is a rigid V-basis ofPy, the linear functional L defined by

Lly =0,L(Qo)=Qo and L(Qy)=0 forallkel ny, (32)

is Hermitian andL (Qx Q) = Ofor all k # [,

(b) (B) implies(A) and the non-singularity of.(Q Qj) for everyk e 0, ny, where L is
defined by(32),

(c) (A) implies (B); moreover,if a linear functional L’ : Py — C satisfies(A), then
L'(X% # 0and the functionaIL,(—ﬁ{o—)L/ fulfills (32).

Regarding Theorem 18, the reader should address himself to Example 55 which reveals
the importance of rigidity in (A). In turn, Proposition 21 provides equivalent forms of
condition (A). The matrix appearing in (B-iv) is in fact surjective.

Proof of Theorem 18. As the reader can easily check, the assumption that all the column
polynomialsQy are real is only used in Step 3 below in order to prove that the functional
defined by (32) is Hermitian. Once the Hermitian property isfestablished, the subsequent
parts of the proof do not explicitly refer @ };_, being real column polynomials. Parts
(a) and (b) of the conclusion are shown in the unit (B)=(A) below, while the rest of the
proof is contained in the unit (A)=(B).

(B)=(A) We split the proof into a few steps, starting with a result whose generality is
surplus to requirements.

Stepl.: If {Qk}:io is a sequence of column polynomials satisfying (Bdy, € C \ {0}
and for everyk € 0, ny, there exists a scalar matri¥, and a column polynomiak; such
that

QkLGkZV + R, and degR; <k,
¢ (33)
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then for everyk € 0, »y, the matrixGy is injective, dy (k) <£(Qy) and HV(Pj\f

lin 1Ty (Ui )

The proof is by induction ok. The casé& = 0 is obvious. Assume that the conclusion
of Step 1 is true for a fixed integer<Ok < »y. As in the proof of Propositiod3, we
rewrite condition (B-i) in the column form (25) and then, applying £33) (33), (33)+1
and Lemma 5, we compare tlle+ 1)th coefficients of column polynomials (relative\{p
appearing on both sides of (25). In consequence, we obtain (see (26) and (27))

]) —

Gy 0 --- 0 Ak
0 G, --- 0 Ak 2

Miyi=| . | Gita (34)
0 0 --- Gy Ak,N

The injectivity of G, and M1 implies via (34) the injectivity of5;+1. Since, by (33);1,
the matrixGyy1 hasdy (k + 1) columns and(Qy+1) rows, we conclude thafy (k +
1) <£(Qk+1). Multiplying both sides onkHinHZ}{’H + Ry41 by the left inverse of
Gr+1 and using the induction hypothesis, we see ﬂat(f;‘érl) C lin Hv(Ufié 0i),
which by (9) impliesITy (P < lin ITy (X3 ;). The reverse inclusion is obvious
due to (33)1. This completes the induction argument.

In Steps 2-5 the sequen{c@k},fio is supposed to satisfy the assumptions of Theorem 18
as well as conditions (B-i), (B-ii) and (B-iii).

Step2: { Qk 1Y, is arigidV-basis ofPy and for every € 0, xy, the matrix[A; 4, .. .,

A} y1" is injective, hence of maximal rank.

Indeed, sincd X} )Y, is a rigid V-basis ofPy and degQy <k for everyk € 0, ny,
Lemma 3 implies tha{Qk},fLO satisfies the assumptions of Step 1. Hence, by (B-ii) and
Step 1, for everyk € 0, xy, dy (k) = £(Qx) andGy is an injective square matrix. This,
when combined with Proposition 9, shows tI{]th}zLo is a rigidV-basis ofPy. In virtue
of (34), the matrix{A; 4. ..., Ay y1* is injective for every integer &k < ny; the case
k = ny < oo is trivial.

Step3: The functional given by (32) is a well defined Hermitian linear functional such
thatL(Qin) =0foralli # ;.

Since, by Step 2{Q};Y, is aV-basis of Py, we see that J/, Q; is a basis of
lin JY, Q: andPy is the direct sum o¥ and lin{J, Q;. This justifies the correct-
ness of the definition and the uniqueness of a linear functibrsatisfying (32). In fact,
the functionalL is of the formL(p) & Lo(p + V) for p € Py, whereLg: Py/V — C
is the unique linear functional defined yy(Qo + V) = Qo andLo(g + V) = 0 for
q € UpL, Ok Itis obvious thaty < ker L. We show that is Hermitian. Indeed, if
p € Py, then there exisp; € V andp; € lin Uf;’o Q; such thatp = p1 + p». Clearly,
L(p7) = 0 because& is a x-ideal. SinceUf:V0 Q; is composed of real polynomials, one
can check thaL (p3) = L(p2). HenceL (p*) = L(p).

We now show that for everl € 0, xy

L(QiQH) =0, 0<j<k, j<i<uy. (35)
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The proof is by induction oR. By (32), the casé = 0 is obvious. Assume that (35) is true
for a fixed integer & k < %y . Leti be an integer such that+ 1 < i <xy. By (B-i), we
have

(X2 01) QF=(Ain Qis1 + Bin Qi + Cin Qi1 O
foralln =1, ..., N. This and the induction hypothesis imply
L(X,0i0;)=0, n=1...,N. (36)

Multiplying both sides of (25) by the leftinverse pij ,, ..., A} y1* (which exists due to
Step 2), we get scalar matrice®,}_; and{E;}*_, such that

N k
Qk—i—lé Z XD, O + Z E; Q. (37)

n=1 =0

This, the assumption thi(is ax-ideal, the induction hypothesis argf) give us (Q; 05, 1)
= 0, which completes the induction argument. Since the functibrial Hermitian, we
deduce from (35) thalL(Q,-Qj) =O0foralli # j.

In the last two steps of the proof we assume that condition (B-iv) holds.

Stepd: L(Qx Q) is non-singular for every € 0, xy .

We proceed by induction ok The casé = 0 is clear. Assume that(Q, Qj) is non-
singular for a fixed integer 8k < wy. Arguing as in the last paragraph of the proof
of Proposition 13 and applying (B-i) and Step 3, we obtain the equality (28). In virtue
of (B-i) and Step 2, the matrikCi+1.1, - .., Cky1.n] hasdy (k + 1) rows andNdy (k)

columns. By (8) and (B-iv), the matrCi+1.1, - . ., Ck+1, 51 iS SUrjective, or equivalently
its adjoint[Cx+1.1, - - ., Cr+1,n]* IS injective. Hence, by the induction hypothesis and (28),
L(Qr+10%,4) is an injective square matrix.

Step5: vV =Vy.

Letpbein)y. By Step 2 and Lemma 3, there exists a finite sequenge;‘io of scalar

rows such thap= Z?LO D;Q;.Takingi € 0, xy, we infer from Step 3thab; L(Q; 0F) =
L(pQ7) = 0.Hence, by Step 4; = 0. ConsequentlyisinV, which shows thay; C V.
The converse inclusiol C V; follows fromV C ker L.

(A)=(B)According to Proposition 10, the sequerég};° , defined by (16) is arigid ba-
sis of Py, { Qi b o= P12 g and R g P\UrYo Ok € V.Asaconsequence( P, P}) =
0 for allk # j. Hence Proposition 13 completes the proof of (A)=(B).

Finally, if L’ : Py — C is a linear functional satisfying (A), thefi |y, = 0 (because
Vi C ker L)y and L' (Qy) = QABL’(Q;CQE‘,) = 0 for everyk e 1,xy, which implies
L' = L'(X%L with L as in (32) (recall tha{Qx},", is aV-basis ofPy). This yields
L'(X% + 0, because otherwige' = 0, and soV = V;, = Py. O

Remark 19. Suppose the assumptions of Theorgééare satisfied. If conditions (B-i),
(B-ii) and (B-iii) are fulfilled and. is given by (32), then

(a)all scalar matricesAy ;, By, j, Ci, j appearing in(B-i) are real. Indeed, taking adjoints
of both sides of the relation=" in (B-i), then transposing them and finally exploiting the
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fact that allQy are real column polynomials, we deduce that (B-i) holds for matﬁqjéjs
B,ﬂ C;{“E instead ofAy ;, B, j, Cx,j, respectively. SincéQy};Y  is a V-basis ofPy, we
conclude thaﬂZTj = Ai B,f} = By andC,j} = Cy. j, which proves our claim.

(b) By, L(Qr Q) = L(QkQZ)B;jJ forall k € 0,xy andj € 1, N. Indeed, applying
(B-i) to the equality X ; Q) Oy = Qx(X;Qr)*, then letting the functional L act on both
sides of it and simultaneously using the inclusiorc ker L and Step 3, we get (b).

(c) V =V ifand only if L(Q QF) is non-singular for every € 0, ny.

This follows from part (a) of Theorerh8 and Proposition 21.

Example 20. Implication (B)=-(A) in Theoreni8 is no longer true if we drop assumption
(B-iv). Tosee thispul = 1,V = {0} andQ; = X* fork e N. Itis clear that the sequence
{01122, satisfies (B-i), (B-ii) and (B-iii) witt; 1 < 1, B, 1 £ 0,Co1 < 1andCr 11 = 0
for k € N. However,{ Q¢ ]2, fails to satisfy (B-iv). The functiondl defined by (32) is of
the formL(p) = p(0) for p € P1. As a consequence,is Hermitian (in fact it is positive
definite, cf. Section 8) antl;, = ker L. Clearly, V¢V, andL(Q Qj) = 0 for all integers
k>1.

6. Quasi-orthogonality: degree versus rank

Let us begin by formulating some equivalent forms of the equélity )V, which is a
mysterious part of condition (A) in Theorem 18.

Proposition 21. LetV be a propek-ideal inPy, L : Py — C be alinear functional such
thatV C ker L, and{Qy};_o (0<n <o0) be aV-basis 0Py such that.(Q; Qj) = Ofor
all i # j. Then the following conditions are equivalent:

) V=V,

(i) L(QxQj) is non-singular for every € 0, n,
(i) the sequenceQy};_, is linearly V, -independent.

Moreover, if L(QxQ}) = L(QxQ;)* for everyk € 0, n, then(i) is equivalent to

(iv) there exists aV-basi#%};_, of Py such that (P; P]’.“) = Oforalli # jandL (P P;)
is a non-singular diagonal real matrix for evekye 0, n.

If {Qx}}_o is rigid (resp.composed of real column polynomial)en{P;};_, in (iv) can
be chosen to be a rigid V-basisBfy (resp.to consist of real column polynomials).

Proof. (i)=(ii) Suppose that, contrary to our claih(Q Q) is singular for some e 0, n.
Then there exists a scalar raWw # 0 such that 0= DL(Qx Q}) = L((D Q) Qj). By the
quasi-orthogonality assumption((D Q) Q) = 0O for everyi 0, n. Since{Q;}! yisa
V-basis ofPy andV C ker L, we conclude thak ((DQy)q*) = 0 for all¢g € Py, which
means thaD O, € V, = V (compare with the proof of (21)). This contradicts the linear
V-independence dfQ;}!_,.
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(i)=(ii) If Y"i_o D kazLO, where{ D, }}_, is a finite sequence of scalar rows, then by
the quasi-orthogonality assumption avd € ker L we obtain

DjL(Qij)=L(ZDkaQ>;> =0, jeOn.
k=0

This and the non-singularity of the matrixQ ; Qj.) imply thatD; = O forall j 0,n,
which gives us (iii).

(ii)=(i) Since V C V,, the equalityy =V, is a consequence of the following fact: for
any two proper ideal®; C V,> C Py, if there exists a linearly,-independent se8 C Py
which is simultaneously &;-basis ofPy, thenVy = Va.

(iv)=(i) This is a direct consequence of (ii)= (i) applied{tB;};_,.

Assume now that the matrik(Qy Q) is symmetric for every e 0,n.

(i)=(iv) Fix k € 0, n. By (i)=>(ii), the matrixL(Q Q}) is non-singular and symmetric.
Hence, there exists a unitary (scalar) matix such that the matrixy; L(Qx Q;) U} is
non-singular and diagonal. SBt = Uy Q. Itis now easily seen thaP; };_, is the desired
V-basis ofPy. If the V-basis{ O, };_ is rigid, then by Propositiof so is {R};_,. If the
column polynomialQy is real, then the matrix (Qy Q,I) is real and symmetric. Thus, the
matrix Uy can be chosen to be real. Consequently, the col@pis real as well. [

Corollary 22. Under the assumptions of Theord®, (A)is equivalent to

() {Qx}i—oisarigidV-basisoPy, L(Q; Q}) = Oforalli # j, L(QxQ}) is non-singular
for everyk € 0,n andV < ker L.

If moreoverL (X% € R, then(A) is equivalent to

(1) {Qu}_o is arigid V-basis ofPy, L(Q; Q%) = Oforalli # j, V C ker L and there
exists a rigid V-basi$ Py };_, of Py composed of real column polynomials such that
L(P; Pj?") = Oforall i # j and L(PP;) is a non-singular diagonal real matrix for
everyk € 0, n.

Proof. It is sufficient to apply Propositio@1. The proof of (A)=(11) requires the sym-
metry of L(Q Q) which follows from the Hermitian property df guaranteed by Theo-
rem18. [

Corollary 23. LetV be a propek-ideal in Py, L : Py — C be a linear functional such
thatV C ker L, and{Q};_, (0<n < oo) be aV-basis 0Py such thatL(Q; Qj.) = Ofor

all i # j and L(QQ3) is a non-singular symmetric matrix for evelye 0, n. Then the
functional L is Hermitian.

Proof. By (ii)=(iv) of Proposition 21, there is no loss of generality in assuming that
L(QxQy) is a non-singular diagonal real matrix for everye 0, n. Arrange members of
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the set J;_, Ok in a sequencéy; }S,l so thatgy # ¢; for all k # 1. Then{q; }S,l is a
V-basis ofPy such that

L(gkgf) =0 forallk #1 and L(g;q}) € R\ {0} foreveryjel,n (38)
We show that ah with these properties must be Hermitian. Notice first that
L(pp™) e R forall p € Py. (39)

Indeed, sincegqj}j.:1 is aV-basis of Py, there exists a finite systetryzj}j.:l of complex

numbers such thqté ijl o;q;. This, the assumption thatis asx-ideal contained in
ker L and (38) yield

L(pp") =L ((Z ocitﬁ) (Z ajq;*)) = lul’Ligig)) € R.
i=1 j=1 i=1

We now turn to the final stage of our proof. Taes Py . Then, by (39), we have

aL(p) + aL(p*) = L(@ + p) @+ p)*) — [22L(X°(X%)*) — L(pp*) € R,
o€ C.

Substitutingx = 1,1, we getL(p*) = L(p). This completes the proof.[]

Remark 24. Let V be a proper-ideal in Py, L, L : Py — C be linear functionals
and{Qk}k o {ék}:io be sequences of real column polynomials such @;ai’:@k for
allk € 0, %y ), Ay Assume that the tripletV, L, {Qk},flo) satisfies (A) (cf. Theorem8).
Then(v L, {Qk} o) satisfies (A) if and only i is a non-zero scalar multiple &fand
deg(Qk— O < <kfora||k € 0, ny (itmay happenthatdeg!]c Q) = k, see Lemma 25).
Moreover, if(V, L, {Qk} o) satisfies (A), themk] = Ay, o By j = Bk jandCy,j = Ck,
forallk, j, whereAk ,,Bk jandCy (respAk j,Bk j ande .j)are scalar matrices attached
to(V, L, {Qk} )(resp(V L, {Qk}k o)) Via implication (A)=>(B) of Theorem 18.
Indeed, |f(V L, {Qk} o) satisfies (A), then evidently deg@ — Qun<kforalk e
0, %y.As Q; Qj_Q,ij andV =V; Cker L, we getL(Q,Qj) = L(Qle) = 0 for all
i # j, which means that the triplet&/, L, { Qi)Y and(V, L, {Qx}},) satisfy (A). By
part (c) of Theorem 18[ is a non-zero scalar multiple &f Since
Xk,j Okt1+ Ek,j Ok + Ek,j Q1= X; Qkéxj Ok
= Ak, jOk+1+ Bi,j Ok + Cy,j Ok
= Ag,j Qi1+ By, Ok + Ck,j Ok-1
and{ék}k ¥, is aV-basis of Py, Lemma 3 implies tha#l; ; = Ay j, Br,; = By, and
Cr,j _Ck]foraIIkJ
Suppose now that is a non-zero scalar multiple €fand deng — Qk) <k forallk e

0, ny. Then evidently de@kék for all k € 0, ny . It follows from Qk Ok that{Qk}
is aV-basis ofPy (use Lemma 3) and(Q,) = £(Q;) = dy(i) foralli € 0, uy. By
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Propositiors, { O}, is a rigidV-basis ofPy . Itis clear thatl.(Q; @j) =L(Qi0H) =0
foralli # j. Thus(V, L, {Ox)}Y,) satisfies (A).

Let us now discuss the role played by condition (B-iii) in Theorem 18. Given a proper
idealV in Py and a column polynomidD, we define

deg, Q =min{degP : P is a column polynomial such th@éP},

min{degp : p € V\ {0}} if V # {0},
0o if Vv ={0}.

Itis clear that deg O <degQ, degp, Q = degQ andny >1 (becausé’ # Py). Notice
that in general there are no relations betweerandny (e.g. if V. = (X1, X2) C P», then
wy =0 < 1=ny,whileif V= (X1 — X2) C Po, thenny =1 < co = uy).

Lemma 25. Let V be a proper ideal ifPy and Q be a column polynomial. Then
(i) deg, Q = degQ provideddegQ < ny.
If moreover V is a-ideal and Q is realthen

(ii) there exists a real column polynomiélsuch thatQié anddeg, Q0 = degé,

(iif) for every integerj > ny, there exists a real column polynomial R such tRatQ and
all the entries ofR — Q are polynomials of degree j.

Proof. (i) Takeacolumn polynomiasuchthagiP anddeg Q = degP.ThenQ—P C
V and deg(Q— P) < ny (because dggQ <degQ). HenceQ = P.

(i) If Pis any column polynomial such that a@i~ P and deg Q = degP, then the
real column polynomiaﬁ 2 %(P + P*T) has the desired properties.

(iii) We have only to consider the casé # {0}. Suppose first that(Q) = 1. Taking
p € V\{0} suchthatdeg = ny, we see that eithéRe p or Imp is a polynomial of degree
ny, which belongs td/. This means that there exists a real polynomia V of degree
ny. As a consequence, the polynomlali 0+ Xf”Vq is the desired one. K(Q) > 1,
then we proceed entrywise[]

Below we show that the degree requirement is stronger than the rank condition.

Proposition 26. Let V be a propes-ideal in Py and {Qk},fio be a sequence of column
polynomials satisfying conditiai-i) of Theoremi8anddeg, Qg = 0. Then the following
conditions are equivalent:

(i) degy, Qi <k forall k € 0, xy and(B-ii) holds;
(i) [Afq,---, Af yI" isinjective for allk € O, »y and(B-ii) holds;
(iii) [A;l, e A;N]* is of maximal rank and(Qy) = dy (k) forall k € O, »y.

If moreoverV = {0}, then any of conditionéi) and (iii) is equivalent to the conjunction
of (B-ii) and (B-iii).



38 D. Cichon et al. / Journal of Approximation Theory 134 (2005) 11-64

Proof. (i)=(iii) Replacing, if necessary,Q«},*, by a new sequencgP:};”, such that
Q,%Pk and deg Qy = degP; for all k € 0, xy, we can assume without loss of generality
that degQx <k for all k € 0, vy andQq # 0. Applying Step 2 of the proof of Theoreb3,
we get (iii) (recall that in Step 2 th@,’s need not be real).

(iif)=(ii) This is a direct consequence of (B-i) and (8).

(il=(i) Fix an integer 0<k < xy. Multiplying both sides of (25) by the left inverse
of [A} . .... A} y1%, we find scalar matricegD,})_; and{E;};_, such that (37) holds.
Proceeding by induction dnand using the assumptions th&s an ideal and dggQo = 0,
we get deg Qi <k foreveryk € O,»y. O

Remark 27. LetV,Land{Q};_ satisfy the assumptions of Theord@and letdeg Qo =
0. We say thatQ, };_, satisfies (A) if there exists a sequen¢@ }J;_ of real column poly-
nomials satisfying (A) an(Q,iQ, forall j € 0, n. By (B*) we mean the conjunction of
conditions (B-i), (B-ii), (B-iif) and (B-iv) withn = »y, where (B-iit) is defined by:

(B-iii*) the matrix[A} , ..., Af y1* is injective for every € O, n.

Conditions (&) and (B) are weaker than (A) and (B), respectively (cf. Proposi26ij.
Consider a sequen¢®; }{_, of real column polynomials such th@t=Q ; forall j € 0, n.
Itis clear that if{ O };_, satisfies condition (B-i) (resp. (B-ii)), then so d¢€x };_, with
the same system of matricdg ;, Bx ;, Ck, ;. The same is true for any of conditions (B
and (B-iv) provided (B-i) holds. Likewise, {fO«};_, is aV-basis ofPy (resp. itis quasi-
orthogonal with respect to a linear functionalvanishing onv), then so is{ék}zzo. On
the other hand, ifQ«};_, is a rigidV-basis of Py (resp. it satisfies (B-iii)), the{@k}zzo
does not have to share this property. This explains why replacing (B-iig4iiy*} makes
the implication (B)=-(A) false. However, the following is true.

Ifdegy, Qo = 0, then{Qy};_,, satisfies (B) if and only if {Q,}} _ satisfies (A)(4O)
with someL which is unique up to a multiplicative constant.

Indeed, if (BY) holds, then by part (ii) of Lemm25 there exists a sequen@k}zzo of real

column polynomials such th@,é@j and deg Q; = degéj for all j € 0,n. Hence,
by Proposition 26{ 0, };_, satisfies (B) and consequently, by Theorem 18, it satisfies (A).
The reverse implication can be proved in a similar manner with the help of Theorem 18.
In view of (40), condition (B) should have been formulated rather for sequences of
equivalence classes (modul) of polynomials than for sequences of polynomials them-
selves.
Concluding this remark, we notice thatif # {0}, { O« };_, is @ sequence of real column
polynomials satisfying (B) (witiQo # 0) and{m,};_, € N is such thatn; > maxk, ny }
for all k € 0, n, then there exists k{-basis{ék}zzo of Py composed of real column
polynomials satisfying (B) and having the property that for evelrye W each entry of
Qy is of degreen, (this means that (§+-(A)). Indeed, we may defingd};_, via

é ) R ifmy >k,
KTl ok ifmg =k,
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whereRy, is a real column polynomial such thm;iQk and all the entries oRy — Qy are
of degreen, (cf. part (i) of Lemma25). By part (a) of Theorem 18, the sequeh@g};_,
has the desired properties.

Applying our Theorem 18 and Proposition 26, we show that Theorem 2 of [31] can
be simplified by replacing one of its rank assumptions by the requirement on degrees of
polynomials in question. By agid basisof Ry we mean a basisP:} 2, of Ry, whichiis
simultaneously a rigid basis @fy; equivalently:{ P}, is a rigid basis of°y composed
of real column polynomials. Given alinear functiodal R y — R, we define the mapping
Ry x Ry 3 (p. q) — (p,q)r £ L(pq) € R. Following [31], we say that-, —) is a
quasi-inner producbnR  if there exists a rigid basisPx } ;2 , of Ry such that.(P; PJ.T) =

Oforalli # j andL(PkPkT) is a non-singular diagonal matrix for everye N.

Corollary 28. Let {P};2, be a sequence of real column polynomials such #yag= 0.
Then the following conditions are equivalent:

(i) {P}p2,is arigid basis ofR v for which there exists a linear functional: Ry — R

such that(-, —) is a quasi-inner product oR y and L (P; PjT) =O0foralli # j;

(i) {Px}zqis arigid basis ofR y for which there exists a linear functional: Ry — R
such thatL ( P; PJ.T) =Oforalli # j andL(P.P,T) is non-singular for every > 0;

(iii) foreveryk € N, there exists a systeAy 1, ..., Ak.n, Bk, -+, Ben: Ci1y - CkN
of scalar real matrices such that
(iii-a) X;Py = Ay jPer1+ Be P+ CrjPiforall j=1,..., N,whereCo; £ 1

andP_, l 0,

(iii-b) the length ofP is less than or equal toék“,‘!’l),
(iii-c) deg Py <k,
(iii-d) the matrix[Cy 1, ..., Cx.n]is of maximal rank.

If (i) holds,then for everyp € Ry, p = 0ifand only if L(pg) = Oforall g € Ry. If (iii)
holds,then[A[ ;. ..., A] \1T is of maximal rank for alk € N.

Proof. Apply Theoreml8, Corollary 22 and part (a) of Remark 19 to the Hermitian (com-

plex) linear functionaPy > p —> L¢(p) G L(Rep) +iL(3Imp) € C and to thex-ideal
V = {0}. Notice also that

Vi ={0} ifandonlyif {peRy:L(pg) =0 VgeRyn}={0} O

7. Quasi-orthogonality: the complex case

Our aim in this section is to prove a version of Theorg®for polynomials which are
not assumed to be real. We begin by formulating appropriate criteria for a linear functional
on Py to be Hermitian.
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Lemma 29. Let V be a propes-ideal, L : Py — C be a linear functional andQ};_,
(0<n<o0) be a V-basis ofPy such thatQg € C, L(Q;) = 0 for everyj € 1,n,
L(X% e R\ {0}andV C ker L.

Consider the following two conditions

(C-i) for everyk € 0, n, there exist a non-singular scalar matrix; and a real column

polynomialS; such thatW Qkisk,
(C-ii) foreveryk € 1,n, I1y(Q}) < lin Iy (U, Qi)
Then(C-i) implies(C-ii), while (C-ii) is equivalent to L being Hermitian. MoreoveGi)
implies(C-i) provided condition{A) of Theoreml8is satisfied.

Proof. Assume that (C-i) holds. Fik € 0, n. SinceV is ax-ideal andSy, is a real column
polynomial, we get

QLW = (W0 L8] LW 00T = of T

and consequentl@=0 w (w;)~L. This implies (C-ii).
Suppose (C-ii) is satisfied. Fix € 1, n. By Lemma3, there exists a finite sequence
{D;}!_, of scalar matrices such tth;:Té > 1 D;iQ;. This leads to

L) =L =) DiL(Qi) =0. (41)

i=1

Takep € Py. Thenp = p1 + p2, wherepys € V andp € lin (J/_, Q;. By V = V¥,
L(py) = 0= L(p1).Sincd J/_, Q;isabasisoflinJ/_, Q;,thereexists afinite sequence
{E;}!_, of scalar rows such that, = >/_ E; Q;. By (41), we have

L(py) =L <Z Q?‘E?) = L(Q))Eg = Q5L(X)E§ = L(p2).

i=0

This implies that the functional is Hermitian.
Assume now thalt is Hermitian. Fixk € 1, n. Then there exists a finite sequeriég}’_,

of scalar matrices such th@t*kTL Y ' o DiQ;. Thus we have

0=L(Qu*" = L(Q}T) = DoQoL(x°).

SinceQoL (X% # 0, we conclude thabg = 0. This gives us (C-ii).

To prove the last assertion, we show thdt is a Hermitian linear functional satisfying
(A), then (C-i) holds withw;, £ G,jl, whereG, are non-singular scalar matrices appearing
in part (b) of Propositio®. Since, by Proposition QG[le}:io is a rigidV-basis ofPy,
we can assume without loss of generality (replac{im}ﬂo by {G,:le},fLO) that each

G is the identity matrix. Thus for eadhe 0, xy, there exists a unique syste{rﬂﬁk)}’;:%
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of scalar matrices such that
k—1

o=z - > Vo, (42)

j=0

Using induction, we show that for evekye 0, xy, there exists a real column polynomial
Sr such thatQkisk. The case& = 0 is trivial (Sp i XO). Assume we have constructed
So. - .. Sc—1 with the desired properties @ T, %v). SetS, = X — Y575 D(k)SJ It is
evident by (42) tha,=Sx. It remains to prove that all the scalar matn({és(k) 0 are
real. Fixi € 0,k — 1. By Theorem 18, the matrik (Q; Q7) is non-singular. Multlplylng
both sides of (42) byo?, we get L(Z,‘f 0 = D(k)L(Q Q7). This and the equalities
0;LS; andQ*<sT giveusD™ = L(=) 0)L(Q; 0"t = L(ZY ST)L(S:ST)~L. Since
L is Hermitian, we conclude thd}, is a real column polynomlal U

We are now in a position to prove a “complex” version of Theorem 18.

Theorem 30. Let V be a propek-ideal in Py, L : Py — C be a linear functional and
{Or}i—o (0<n < 00) be a sequence of column polynomials such @t~ 0. Let(A), (B)
be as in Theorer8, and(C-i), (C-ii) be as in Lemm&9withn = «y.

Then

(@) (B-i), (B-ii)and(B-iii) imply that[Ak 1 - Af yI" isinjective for every € 0, »y and
{Ok}i_ois arigid V-basis ofPy; if, in addmon to(B-i), (B-ii) and(B-iii), any ofthetwo
condmons(C i) and(C-ii) holds,then L defined b§82)is Hermitian andL (Q; Q ) =
foralli # j,

(b) (B) together with any of condition&C-i) and (C-ii) imply (A) and the non-singularity
of L(QQ}) for all k € O, xy, where L is defined b{82),

(c) (A) implies(B), (C-i) and (C-ii), provided L is Hermitianjf a linear functional L’ :
Py — C satisfiegA), thenL' (X% # 0and the functionaIL,(—XO)L fulfills (32) (L is
not assumed to be Hermitian).

Proof. The proof of parts (a) and (b) of the conclusion is essentially the same as that in
Theorem 18. We only have to modify the proof of Step 3 in order to showlthiztfined

by (32) is Hermitian without referring tOQk}Zio being real column polynomials. How-
ever, Lemma 29 guarantees that any of the two conditions (C-i) and (C-ii) inipbesg
Hermitian.

All the remaining statements of the conclusion may be justified in much the same way
as it has been done in the proof of Theorem 18; however, we need to apply Lemma 29 to
show that (A) implies (C-i) and (C-ii) providddis Hermitian (notice thaV = V; being
proper excludes (X% = 0). O

Remark 31. Let (A), (B) be as in Theoreri8 and (C-i), (C-ii) be as in Lemma 29 with
n = wy. A careful inspection of the proof of Lemma 29 shows that if the functional
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L is Hermitian, then (A) implies (C-ii) with lidly (QF) = lin ITy (Qx), and (C-i) with

Wi = G;l and degS; = k, whereGy, is a non-singular scalar matrix appearing in part (b)
of Propositior9. Equivalent forms of (A) are contained in Proposition 21, while some facts
related to (B) can be found in Proposition 26.

The reader may have noticed that Proposition 13 is formulated for rigid bageg,of
while Theorems 18 and 30 concern rigiebases oy . However, by Proposition 10, there
is no loss of generality in assuming that the sequeiizg)_, appearing in both these
theorems is selected from a rigid bag }7° , of Py so thatl J;2y Pi \ Ur—g Ok S V.

8. Orthogonality

Inthis section we restrict our attention to orthogonality of polynomials of several variables
with respect to a positive definite linear functional. We will state and prove refined versions
of the main results of Sections 5 and 7.

Let L : Py — C be apositive definitdinear functional, i.eL(pp*) >0 for all p € Py.

It is well known that such. has to be Hermitian (cf. [9, Lemma V.37.6]). Applying the
Cauchy—Schwarz inequality to the semi-inner producly) —> L(pg™) onPy, we get

Vi ={p € Pn:L(pp*) =0} (43)

Suppose now that : Py — C is a linear functional. A sequen¢@;};_, (0<n <oo)
of column polynomials is said to bHe-orthonormalif L(Q,»Qj) =O0foralli # j, and

L(Qy Q7) is the identity matrix for ever < 0, n. Notice that each-orthonormal sequence
{Qk}}_ois linearlyV-independent for any ide® < V.. Indeed, ify "}, D; 0;=0, where
{D;i)i_y is a finite sequence of scalar rows, then = L((Xi_o D; 0;) Q%) = 0 for all

j € 0,n. This and Lemma give us the desired-independence.

The following proposition provides necessary and sufficient conditions for a linear func-
tional to be positive definite.

Proposition 32. If L : Py — Cis a non-zero linear functionathen the following condi-
tions are equivalent

(i) Lis positive definite,
(i) Vr is ax-ideal and there is a rigid/; -basis of Py, which is L-orthonormal,
(i) Vv is ax-ideal and there is &/, -basis of Py, which is L-orthonormal,
(iv) thereis a basis B oPy such thatL(pp*) € {0, 1}andL(gr*) = Oforall p,q,r € B
such thaty # r.

Proof. SetV = V. SinceL is non-zero, the idedl is proper.

()= (ii) The functionallL being positive definite is Hermitian. Hence the\éet ax-ideal.
Since{Z} 1}, is aV-basis ofPy, the setd}, = ¥, 2} is a basis of £ lin A} and
Py is the direct sum o¥ andF. This and (43) imply that the mappifgx F > (p, g) —>
(p,q)L 4 L(pg*) € Cis an inner product ofr. Arrange members oﬂx in a sequence
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{X%)$_, so thaty = 0 and® <oy for everyk e 15 such thatk + 1<s, where
df

s = Zjio dy (j) (this means that) = {X% : |o;| = k} for k € 0, »y). Applying the
Gram-Schmidt orthonormalization procedurgXd*}; _, with respect to the inner product
(-, =), we find a basigg }jzl of F such that

lin{X*% :iel, ji=lin{g:iel,j}, jel,s, (44)
L(giq}) =96ij, i,j€ls. (45)

SetQx = {g; : |oi| = k}fork € 0, ny. By (44), degy; <|«;|for j € 1, 5, and consequently
degQy <kfork € 0, ny.Accordingto (7)£(Qx) = dy (k) fork € 0, xy. Since a subsel
of Fis linearly independent if and only € is linearlyV-independent, we conclude that the
sequencer}:LO is linearlyV-independent. Hence, by (45) and part (i) of Proposition 6,
{Qk},fio is a rigidV-basis ofPy, which isL-orthonormal.

(il)=(iii) Trivial.

(ii)=(iv) Assume that{ Q; }} _, (0<n < 00) is aV-basis ofPy, which isL-orthonormal.
ThenC £ | Ji_, O« is a basis off £ lin C, andPy is the direct sum o¥ andF. LetD

be a basis o¥. ThenB £ C U D is a basis ofPy. One can deduce frov = V* and the
L-orthonormality of{ O, }}_ thatB has all the desired properties.
(W)= If r =3 ,cp 2pp, wherefa,}pep < Cis afinite system, then

Lory =L > opp| D] @a* || =D laplPLipp™) =0,

pEB qeB peB

which proves the positive definitenesslof [J

Remark 33. Let L be a non-zero positive definite linear functional Br. A thorough
inspection of the proof reveals that all the bases appearing in conditions (ii), (iii) and (iv)
of Proposition32 can be chosen so as to be composed of real polynomials. Case (ii) may
be handled with the help of the Gram—Schmidt orthonormalization procedure given by the
following explicit formulasig; = —= X and

VG1
L(XMX™) ... L(XMX%-1) X1
1 L(X"™2X"M) ... L(X®X"™-1) X*2

Gn = ———— det : : : forne2s,
\/Gnanl : : :

L(X% X1y ... L(X% X%—1) X%

whereG,, i det[L(X“iX“/‘)];{j:1 for n € 1, s. Since monomialgXx * }—q are linearly
independent, their Gramiaf& };_, are positive. Ad. is Hermitian, all the polynomials
{qr};,_, are real. Case (iii) is covered by (ii), while (iv) requires showing that there exists
a (linear) basis o¥’; composed of real polynomials (this property is shared by-adleals

in Py). Indeed, ifD is an arbitrary (linear) basis daf;, thenV, = Iin({‘Rep :p €

6 See (1) for the definition of.



44 D. Cichon et al. / Journal of Approximation Theory 134 (2005) 11-64

DYU{3mp : p € D}) and consequently the desired basis can be selected from the set
{Rep : p e DYU{Imp : p € D}. Notice finally that in general neithéfiep : p € D}

nor {3mp : p € D} has to be a basis df;, e.g.L(p) = p(0) for p € P1andD =

{if(X*F +iX))22,.

Example 34. If we drop the assumption th&}, is ax-ideal in any of the conditions (ii) and
(i) of Proposition32, then the functiondl may not be positive definite. Let, a2, z1, z2 be
complex numbers suchthatyy # 0,01 +02 =1, 4 wz1to2z2 € R,y 4 OClZ%-‘rOCzZ%—
B% > 0,21 # zpand{z1, 22} # {71, 22} (€.0.01 = 2,00 = —1,z1 = 1+iandzy = 1+ 2i).
Define the linear functiondl onP1 by L(p) = a1p(z1) + a2p(z2) for p € P1. One can
check tha{ X%, X}isaV;-basis ofP1 andV; = {p € P1 : p(z1) = p(z2) = 0}. HenceV;,
is not ax-ideal and, in consequendeis not positive definite. Notice also thatdifty /V; =
2,dy(0) = dy (1) = landwy, = 1.SetQo = X®andQ; = %(X—ﬁ).Astraightforward
computation shows thdt(QoQp) = 1, L(QoQ]) = L(Q103) = 0andL(Q1037) = 1.
This implies thaf Qk}:Zg is a rigid V. -basis ofPy, which is anL-orthonormal set of real
polynomials. We believe that this idea should workigy, > 1 as well.

Remark 35. By Propositiond 6 and 32 we infer that if. : Py — Cis a non-zero positive
definite linear functional, then the matidx =, =0 ”{O})*) is of rankdy (0) + - - - +dy (k) for

k € N, whereV =V andZ ”{O} is given by (29). This formula may be useful to calculate
the exact values afy (k) at Ieast in the case of set ideals (cf. Section 9).

The result which follows solves the question of orthonormality with respect to a positive
definite linear functional. Notice the absence of the rank condition in part (B), in contrast
to Theorem 18.

Theorem 36. Let V be a propek-ideal in Py, L : Py — C be a linear functional and
{Or}i_o (0<n < o0) be asequence of real column polynomials such@hat= 1. Consider
the following two conditions”

(A) {Qk};_ois arigid V-basis ofPy, which is L-orthonormaland V' C ker L;
(B) n = ny and there exists a systefiny ;. Bk,j]},fioj.\’:l of scalar matrices such that
(B-) X;Qx=Ai Qi1+ Be Ok + Af_; ,Qc-1forall j e TN andk € 0y,
whereA_q ; 2 1 and 0.1 a4 0;if vy < oo, thenA,, ; a [1,...,17 with
U(Ayy. ) = £(Qx,) @Nd Oy 41 £ O,
(B-ii) the length ofQy is less than or equal tdy (k) for everyk € 0, ny,
(B-iii) degQy <k for everyk € 0, ny.

Then (B) implies (A), the injectivity of [A} 1 LA yI* for every ke 0, ny
and the positive definiteness of lwhere L is deflned by(32). Conversely, A)

7 See Propositio26 for related facts concerningg(iii).
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implies(B) and V. = V;. If a linear functional L’ : Py — C satisfies(A), then L’
fulfills (32).

Proof. (B)=(A) Itfollows from Theorem 18 thatthe matriXy ,, ..., A} yI*isinjective.
This means that part (B-iv) of Theorem 18 is satisfied ity = A;_, ;. Applying once
more Theorem 18, we conclude thét = 1V, {Qk},fio is a rigid V-basis of Py and
L(Qx Qj) = O for all k # j, whereL is the Hermitian linear functional defined by (32).
Using induction we show thdt(Q, Q5) is the identity matrix. Ik = 0, thenL(Q0Qp) =
1 because of (32). Suppose that the induction hypothesis holds for &fiXéekn by the
injectivity of [A} ;,..., Ay y]* and (28),L(Qk+1Q}, 1) is the identity matrix as well,
which completes the induction argument. Positive definitenetsi®how guaranteed by
Proposition 32.

(A)=(B) By Proposition 21 and Theorem 18, it remains to show hat = A;_, ; for

allk € 0,xy and;j € 1, N. However this follows from (28) and the assumption that each
L(Qy Q) is the identity matrix.
SinceL’(X°) = L'(Q00Qf) = 1, the last assertion is forced by Theorem 18]

Exploiting Theorem 36, one can formulate a simplified version of Theorem 2.2 of [32]
(compare with Corollary 28; see also Proposition 26). Once more the rank condition can
be replaced by the assumption on degrees of polynomials involved.

Analogous to Theorem 30, we can state a “complex” version of Theorem 36.

Theorem 37. Let V be a propek-ideal in Py, L : Py — C be a linear functional and
{Or}i—o (0<n < 00) be a sequence of column polynomials such hat= 1. Let(A), (B)
be as in Theorer36,and (C-i), (C-ii) be as in Lemm&9withn = «y .

Then the whole conclusion of Theor@@remains true provide@B) is strengthened by
either of the two condition&C-i) and (C-ii).

Proof. According to Propositions 21 and 32, (A) implies tivat= V; andL is Hermitian.
This enables us to repeat arguments used in the proof of Theorem 36 replacing Theorem 18
by Theorem 30. [J

9. Algebraic sets as supports of orthogonalizing measures

Denote byMiy the set of all positive Borel measurgon R" with all finite moments,
i.e.fRN Ix*| du(x) < oo forall « € NV . Notice that each measures My being finite is
regular (e.g. see [22, Theorem 2.18]). As a consequence, every non-zero measiitg
has a non-empty closed support sup@ivenu € iy, we define the linear functional
L, :Py — Cvia

Lu(p) = /IRN pdu, pePy.
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Call a linear functional on Py amoment functiondl (induced by a measugee My) if
L = L,. Clearly every moment functional is positive definite. We say that a measare
9ty orthonormalizesa sequenceQ;};_, (0<n < oo) of column polynomials if Ok };_,
is L ,-orthonormal. In this section we show that if there exists a measure orthonormalizing
a sequence of column polynomials satisfying the three term recurrence relations modulo a
x-ideal, then this ideal must be a set ideal. We first focus our interest on such ideals.

Let 4 be a subset dR" . Define thex-ideal Z(4) via

Z(A) ={pePy:pkx)=0 forallx e 4}.

We callZ(4) the set ideal(induced by the set). If the interior of 4 is non-empty, then
by the unigueness theorem for polynomiélst) = {0}. For p € Py, we setz, c {x e
RY : p(x) = 0}. To avoid ambiguity (e.gp = X1 can be regarded as a membeffafas
well as of P2) the numbeN appearing implicitly in the symbaE, will be always declared
explicitly by writing p € Py. Define

4°={2p:pePy and ACZ,}. (46)

Notice that the sedl~ remains unchanged if we replagy by Ry in (46) because for
every p € Py the zero sets of polynomiafsand (Rep)? + (3mp)? are equal to each
other (cf. Section 1 for the definition & ). Since each algebraic subsetRf is of the
form Z, with somep € Ry, our definition of4 * coincides with the closure of in the
Zariski topology (which consists of complements of algebraic subsdtd'df Recall that
RY equipped with the Zariski topology is a topologidalspace (because finite subsets of
RY are algebraic). As usudl stands for the closure of in the Euclidean topology d&" .
The reader can easily deduce from (46) thatif 4, € RV, thenZ(41) € Z(4>) if and

only if AZZ - Alz, which in turn implies that

I(41) =I(4z) ifandonlyif A; =4,. (47)
As a consequence, we get

M) =I5, ARV (48)

Moreover, sincel “is areal algebraic set, it is of the forff), with somep e Py; therefore
Z(A) = Z(Z,). In other words, every set ideal Py is of the formZ(Z,,) with somep e
Pw . For fundamentals concerning algebraic sets and the Zariski topology we recommend
the monographf3,8].

The proof of the following fact is mainly included to keep the exposition as self-contained
as possible.

Lemma 38. If p € Py is such thatz,, # J, thenZ2,, is finite if and only ifxz(z,) < oo
(equivalently: dimPy /Z(Z,) < o0). If cardZ, < oo, then

AI(Zp)
dim Py/Z(Zp) = Y drz,) (k) = cardZ,. (49)
k=0

8 In [10,11]“moment functional” is nothing but another name for linear functional on polynomials, which is
not our case.
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Proof. The equivalencerz(z,) < oo <= dim Py/I(Z)) < oo is clear. If the seE), is
finite, then the (well defined) mapping

PN/L(Zp) 5 r+I(2p) —> 1|z, € Cc2r

is a linear isomorphism. This implies diffy /Z(Z,) < oo and (49).

Assume that dinPy /Z(Z,) < oco. Suppose that, contrary to our claim, the Sgtis
infinite. Take an arbitrary sequen¢e,};°, < Z, whose entries are pairwise distinct.
For every integen > 1, there existg,, € Py with the propertyg,(x;) = J, ; for j €
1,n. Then, as is easily seequ, ¢o, ... are linearlyZ(Z,)-independent, which contradicts
dim Py/Z(Z,) < 00. O

We now describe the ideal of the for¥ii,, whereL is a moment functional.

Proposition 39. If u € My andu # 0, then

(i) Vi, = Z(suppw) = Z(Suppi”),
(i) suppu is finite if and only if’xVLu < oo (equivalently: dimPy /Vp, < 00).

Proof. (i) By (48), itis sufficient to show that,, = Z(suppw). Takep € Py. The positive
definiteness oL, when combined with (43), implies that

:»/RN p@)|*du(x) =0

< p=0aely]
<= suppu € Z, (by the continuity ofp)
< p € L(suppu).

(i) Notice first thatsuppu” = Z, with somep € Py, and consequently by (., =

Z(Z,). Since supp is finite if and only if suppu’ is finite, Lemma 38 completes the
proof. O

In fact, Proposition 39 implies Lemma 38. Indeed, there exists a measuf8ty such
that suppe = Z, (see Lemma 40 below), and consequently, by part (i) of Proposition 39,
I(Zp) = Vi, Applying part (i) of Proposition 39 completes the proof of our claim.

It is well know that a moment function&l on Py may be induced by more than one
measure (cf. [4]). Nevertheless jif, i1, € My induce the same moment functional, then
we deduce from (47) and Proposition 39 thappu; = Suppyis .

Lemma 40. For any closed non-empty subsébf R", there exists a probability measure
u € My such thatsuppu = 4.

Proof. Assume4 is infinite (the opposite case is trivial). Lét;};°, be a sequence of
distinct points, which is dense id. Setry, = maxX{|xx;| : i = 1,..., N}, wherex; =



48 D. Cichon et al. / Journal of Approximation Theory 134 (2005) 11-64

(X1, -+ .2 Xk.N), @nde, = 27K e for k> 1. Then) 72, &)l < oo foralln € N. Define
vVviav(e) = Y .., o & for a Borel subset of R". Since

o0
/RN [x* dv(x) < Z skzllfl <00, aeNV,
k=1

uiN)v is as desired. [J

the measure is in iy and supp = 4. Henceu 4 (
vV

The following proposition shows that the problem of existence of an orthonormalizing
measure can only be solved in the case of set ideals. It is worth noting that therielaads
which are not set ideals (e.§. = (X*) € P1, wheres > 2).

Proposition 41. Let V be a propes-ideal in Py and # 4 € RV.

@ Ifa sequeanQk},’:Lo of real column polynomialéwith Qg = 1) satisfies condition
(B) of TheorenB6, and L defined by32) is a moment functional induced lye iy,
thenV = Z(suppw).

(i) If V. =7Z(4),then there exists arigid V-basiQk},fLO of Py composed of real column
polynomialgwith Q¢ = 1),orthonormalized by somee iy and satisfying condition
(B) of TheorenB6.

Proof. (i) By Theorem 36 and part (i) of Proposition 38,= V,, = Z(suppuw).
(ii) In virtue of Lemma 40,4 = suppu for someu € Niy. Applying Proposition 32 to

n
L, (see also Remark 33), we find &np-orthonormal sequenqegk}k:g“ of real column
polynomials (withQo = 1), which is arigid/,, -basis ofPy . By part (i) of Proposition 39,
Vi, = Z(4). This and Theorem 36 complete the proof.]

10. Existence of orthogonalizing measures: general approach

In this section we distinguish the class-efdealsV for which every sequence of real
column polynomials satisfying the three term recurrence relations méig@rthonor-
malized by a measure; we will call themdeals of type C. As will be shown below, type C
is closely connected with the notions of types A and B introduced in [24], namélgals
of the formZ(Z,), wherep € Py is an arbitrary polynomial of type A or B, are always of
type C. This crucial observation motivates our interest in types A and B which additionally
are easier to deal with than type C. On the other hand, Proposition 41 guarantees that all
(but some pathological cases)deals of type C must be of the forffXZ,) with some
p € Pn.

Given a (complex) inner product spafe we denote by.*(D) the algebra of all linear
operatorsA : D — D for which there exists a linear operataf : D — D such that
(Af, g) = (f, A*g) for all f, g € D; suchA* is unique and the mappind’ (D) > A —

A* e L*(D) is the involution inL*(D). The identity operator o is denoted byip (or
simply1). SetL%(D) = {A € L*(D) : A = A*}. AnN-tupleS = (S1, ..., Sy) € LED)V
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is said to beommutingf all the operatorssy, . .., Sy mutually commute. For sudi-tuple
Sand a polynomiat = ZO‘ENN a, X* with complex coefficienta,, (vanishing for all but

a finite number of indices), we define the operatexs) € L*(D) via

rS)= Y a,8* with $*=5P.. 5% (5= Ip).
dENN

We say that a commuting-tupleS € L%(D)" iscyclicif there exists a vectar € D (called
acyclic vectorof S) such thaD = {r(S)e : r € Py}.

A polynomial p € Py is said to be oftype A° (resp. oftypeA), if for every inner
product spac® and for every commutingl-tuple (resp. cyclic commutiny-tuple)S =
(S1,...,8n) € Lg(D)N satisfyingp(S) = 0, there exists aN-tuple(Ty, ..., Ty) of spec-
trally commuting self-adjoint operato?sin a Hilbert spacéC D D (isometric embedding)
suchthats; € T;forall j =1, ..., N.Itis amatter of direct verification that a polynomial
p € Py is of type A (resp. A) if and only if the polynomialRep)? + (Imp)? € Ry is
of type A (resp. A).

We say thap € Py is of typeB, if every positive definite linear functional : Py — C
vanishing orZ(Z,) is a moment functional.

A x-idealV in Py is said to be otypeC, if eitherV = Py or V # Py and for every
sequenc«{;Qk},’c‘Lo of real column polynomials satisfying condition (B) of Theorem 36 with
Qo = 1, the linear functionalL defined by (32) is a moment functional. A polynomial
p € Py is oftypeC if the setideall(Z,) is of type C.

When we consider typesAand A in the case of a specific polynomial we have to declare
the number of its indeterminates in advance. The same refers to types B and C (in the latter
case only the zero ideal needs a declaration). The dependence of f/pad A on the
number of indeterminates is illustrated below.

The zero polynomial is of type%as a member oP; and is

not of type A as a member @%,. (50)

The first statement of (50) is an immediate consequence of the well known fact asserting
that every symmetric operator in a Hilbert space has a self-adjoint extension possibly in a
larger Hilbert space (cf. [1, 8111 Theorem 1] and [25, Proposition 1]), while the other can
be deduced from [4, Theorem 6.3.4] via [26, Proposition 2]. In view of Proposition 42, the
Hamburger theorem (cf. [4]) just amounts to saying that the zero polynomial is of type A
as a member oP;.

Proposition 42. A polynomialp € Py is of type A if and only if every positive definite
linear functionalL : Py — C vanishing on the principal idedlp) is a moment functional.
A x-ideal V in Py is of type C if and only if every positive definite linear functiohal
Py — C satisfyingV, = V is a moment functional. If € Py is of type Alresp.B), then

it is of type B(resp.C).

Following [27, Section 18] it is possible to characterize tygestmilarly to type A
replacing functional& by mappings taking values in sesquilinear forms.

9 Thatis the spectral measures of the operafgrs. ., Ty commute.
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Proof of Proposition 42. The proof of the first equivalence (concerning type A) is essen-
tially the same as that of [26, Proposition 2] (notice that a linear functibnaPy — C
is positive definite and |,y = 0 if and only if the corresponding multisequence=
{L(X“)}O{GNN is positive definite and, = p(E)c = 0, whereE = (Ey,...,Ey) is

the N-tuple of linear operators acting thN via Ej(c)(0) = c(a+ e;) with e; i

(01,5, ..., 0w, ;). The other equivalence (concerning type C) can be deduced from Propo-
sition 32, Remark 33 and Theorem 36. The last statement is evident, b¢paus€ (Z,)
andV, CkerL. O

In view of Proposition 42 and Theorem 43, as far as tyde€\AB and C are concerned,
only the polynomials with unbounded zero sets need be investigated. It is worth noting that
the proof of Theorem 43 refers to the positivstellensatz (cf. [8, Corollaire 4.4.3]).

Theorem 43. Every polynomiap € Py with compact Z, is of typeA?, and,in conse-
quencepf type C.

Proof. Replacing, if necessarg,by (Rep)? + (Imp)?, we can limit ourselves to the case
p € Ry. Proposition 2 of [26] adapted to our setting guarantees that pachR y of
type A with compactz, is of type A. On the other hand, Theorem 1 of [23] applied to
R = {p, —p} and combined with Proposition 42 implies that each Ry with compact

Z, is of type A (see the proof of Proposition 42 for a hint). Applying Proposition 42
completes the proof.

Question 1. Does there exist a polynomigal € Py of type A which is not of type &2

The interested reader is referred to paéss2] which are in a way related to Question 1.
It follows from Proposition 42 that the definitions of types A and B coincide for eyeey
Py for whichZ(Z,) = (p).

Question 2. Do types A and B (resp. B and C) coincide for everg Py ?

Remark 44. Let us discuss in more detail the definitions of types A and C.

(a) If p € Py is of type A, then the sdt (p) of all positive definite linear functionals
on Py vanishing on(p) coincides with the sety(p) of all moment functionals ofPy
induced by measures supporteddp (both sets are non-empty).

Indeed, ifL € Ly(p), then by Propositiod2 L is a moment functional induced by a
measureu € NMy. SinceL|,) = 0, we get 0= L(p*p) = [ | p(x)|?du(x), which
implies that the closed support suppf u is contained ianRThusL € Lm(p). The
converse implication is plain.

(b) If p e Py isoftypeA,then(V, : L e Ly(p)} ={Z(4) : 4 C Z,}.

10 The casez,, = @ is not excluded.
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Indeed, ifL € L, (p), then by (a).L = L, with someu € iy supported inZ,. As a
consequence, by part (i) of Propositid, we have);, = Z(4) with 4 A suppu € Zp.
Conversely, if4 is a subset ofZ,, then by Lemma 40 there exists € iy such that
suppu = 4. ThenL, € L (p) and, by part (i) of Proposition 3%,(4) = Z(4) = Vp,
(the cased = Jis trivial).

(c) Suppose that &-idealV in Py is of type C. Denote by’ (V) the set of all positive
definite linear functionalé. on Py such thaty, = V. If L' (V) # ), thenV is a set

ideal. IfV is a set ideal induced by € R", thenL’ (V) is equal to the sdt,(V) of all

moment functionalé on Py induced by measurgssuch thatd* = suppu’; moreover
thenl’ (V) # .

Indeed, ifL’, (V) # <, then by Propositions 42 and 3@,s a set ideal. IV = Z(4)
for somed € RY, then the equality. (V) = L, (V) can be inferred from (47), (48) and
Propositions 42 and 39, whil€,, (V) # & from Lemma 40.

Example 45. Consider the-ideal vV = (X*) in Py with s >2. We show that’, (V) = .
In the contrary case, there exidtse L/, (V). SinceV =V, C ker L, we get L(X)=0
for all j >s. This and the Cauchy—Schwarz inequality lead to

O<ILX* HPKLAL(X?CY) =0 (because@ — 1)>s).

HenceL(X/) = 0 for all j >s — 1. By backward induction, we gdt(X’) = 0 for all

i >1. This implies thatL(r) = L(1)r(0) forr € P1. If L(1) = 0, thenV, = P1 # V,
a contradiction. IfL(1) # 0, thenV, = (X) # V, a contradiction. Therefore (V) =
&, which by TheorenB86 implies that there exists no sequem@{},flo of real column
polynomials (withQo = 1) satisfying condition (B) of Theorem 36 (hexg¢ = s — 1 and
3V = Xxkfork =0,...,s — 1). By Proposition 42 is of type C but evidently it is not a
setideal. Summarizing, we see that part (ii) of Proposition 41 is no longer trueideals
which are not set ideals.

Let us list some properties of type$,A, B and C. Our first goal is to discuss whether
a polynomialp € Py of type A (resp. A, B, C) composed with a polynomial mapping
¢ : RM — RN is still of the same type. In general, this procedure does not preserve
types R, A and B. To see an example, defipe= X, — X2 € P, andg : R?> — R?
via ¢(x1, x2) = (x1, xf) for x1, x2 € R. Thenpis of type A (because every symmetric
operator has a self-adjoint extension possibly in a larger Hilbert space; see also the proof of
[26, Proposition 3]), wheregso ¢ = 0 € P» is not of type B (cf. [4, Theorem 6.3.4]). On
the other hand, types’AA, B and C are preserved by polynomial automorphisms (see [29]
for fundamentals of the theory of polynomial automorphisms). Prototypes of this property
have already been indicated in [24,27].

Proposition 46. Assume thap : RY — R" is a polynomial automorphism. }f € Py is
of type A(resp. &, B), thenp o ¢ € Py is of type Alresp. A, B). If V is a x-ideal inPy of
type Cthen so is the--ideal V,, 4 {gop:q e V}inPy.
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Proof. Throughout the proof we use the following notatior= (¢4, ..., ¢y) andp ! =

WYq, ..., ¥n), wherepq, ..., oy, Yy, ..., ¥y € Ry. Denote byC,, the x-algebra iso-
morphism ofPy given byC,(q) = q o ¢ for g € Py.

Supposey € Py is of type A. Take a commutind{-tupleS = (Si, ..., Sy) € LAD)N
such thatp(¢(S)) = 0. Then there exists aN-tuple T = (T4,..., Ty) of spectrally
commuting self-adjoint operators in a Hilbert space> D such thatp;(S) < T; for
all j = 1,..., N. Let E be the joint spectral measure ©f(cf. [5]). Then theN-tuple
(fRN YidE, ..., f[RN U dE) is composed of spectrally commuting self-adjoint operators
ands; =y (p(S) Sy ,;(T) S fRN Y ; dE foreveryj =1,..., N.This shows thapo ¢
is of type A. The case of type A can be handled in much the same way, beS&isgclic
if and only if ¢(S) is cycle (with the same cyclic vector).

Proposition 42 helps us to establish the case of type C. Indeéd; iPy — Cis a
positive definite linear functional such thij = V,, thenL o C,, is a positive definite
linear functional as well, an¥..c,, = C;l(VL) = C;l(C(p(V)) = V. SinceV is of type
C, there existg: € My such thatl o C, = L. Applying the measure transport theorem
(cf.[16, Theorem C, p. 163]) we gét= L ., Which proves our claim. A similar argument
combined with the equalit¥(Z,.,) = Cy(Z(Z))) settles the case of type B[]

Continuing our discussion, we show that “freezing variables” preserves type A.

Proposition 47. Let N >2,k € {1,..., N — 1} and Ax+1, ..., Ay € R. If p € Py is of
type A(resp. &), then soisp(X1, ..., Xk, Akt1, ..., An) € Pk.

Proof. If S = (S1,..., 8 € L*‘S(D)k is a commuting-tuple such that
p(Sl’ sy Sk7 ;Lk+la LR ;"N) = 07

the~n§ a (S1, ..., Sk Akv1Ip, ..., AnID) € Lz(D)N is a commutingN-tuple such that
p(S) = 0. Moreover, every cyclic vector &is a cyclic vector ofS. These two facts enable
us to complete the proof.[]

Regarding Propositiod7, we see that the polynomial= X, € P, is of type 2, ¢ 2
p(X1,0) € Prisoftype R (andZ, = R), whereasjas a member o, is not of type A (cf.
(50)). This means that it is essential in Proposition 47 to €&, . .., X, Ak+1, ..., AN)
as a polynomial itkindeterminates. On the other hand, freezing variables may legg o
@, e.g. the polynomiap = X2+ X3 — 1 € P, is of type &, hencey £ p(X1, 12) € P1
is of type A for every/, € R, thoughz, = & if 13 > 1.

The question arises whether the algebraic subsets or supersgiswherep € Py is
a polynomial of type A (resp. A B, C), are still the zero sets of polynomials of the same

11 This follows either from Theorem3 or from the ensuing simple reasoning:sSif= (Sq, S) € L’;‘(D)2 is
a commuting pair such tha + 55 = 1, then||S; £ <((S? + $5) 1. f) = | fI|? for f € D andj = 1,2,
which implies that the closures 6f andS», considered as operators in the Hilbert space completidn, fre
commuting bounded self-adjoint operators.
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type. According td24, Theorem 6.3] (see also Example 54, in which a particular case of
[24, Theorem 6.3] is explicitly quoted), one can find two polynomials € Py, both of

type A, such tha. Z, ¢ Z,,, wherep 2 gr is not of type B. On the contrary, as shown
below in Lemma 49, the zero set of a polynomial of type A enlarged by an arbitrary finite
set is still the zero set of a polynomial of type A. An answer to the question of diminishing
algebraic sets is given in Proposition 48, which generalizes [27, Proposition 55] to the case
of type A and provides a hereditary property of type B.

Proposition 48. Let p, g € Py be such thatz, € Z,. If g divides p and p is of type A
(resp. R), then sois q. If p is of type Bhen so is q. If p is of type Ahen every-ideal V
in Px which containg p) is of type C. In particularif p is of type Athen q is of type C.

Proof. Supposep is of type £ andp = gr with somer € Py. If S € LED)" is a
commutingN-tuple such thag (S) = 0, thenp(S) = ¢(S)r(S) = 0 and henceis of type
A°. The same applies to type A.

Suppose now that is of type B. LetL be a positive definite linear functional dny
vanishing oriZ(Z,). SinceZ(Z,) € Z(Z,), L must be a moment functional. Hengés of
type B.

Finally, let us assume thptis of typeA. Suppost is a positive definite linear functional
on Py such thaty;, = V. Since(p) € V =V, C ker L, we infer from Propositior2
thatL is a moment functional. Applying once more Proposition 42, we concludé/tlsat
of type C. This and the inclusionig) C Z(Z,) € Z(Z,) imply gqis of typeC. [

To illustrate Proposition 48 set
p=X2+X3+X3-1 and q=(X?+X3-1)°+x3

The polynomialsgp andq are of type & as members oP3; (compare with footnotd 1),
andJ¢ 2, & Z,. Moreover, the polynomigp is irreducible inP3 (consequently the zero
sets of divisors op are of the formJ and Z,) andq is irreducible inR3 (howeverg =
(X2 + X3 — 141X3)(X2 + X3 — 1 —iX3)). In virtue of [8, Théoréme 4.5.1], we see that
Z(Zp) = (p) andI(ZX%+X§71) = (X% + X% — 1)(C P»). The latter equality turns out to
be useful for proving thaf(2,) = (X2 + X3 — 1, X3).

Givena = (a1, ..., ay) € RY, we define the polynomiab, = Z,?’:l (Xx — ap)?. Itis
clear thatz,,, = {a}.

Lemma 49. Leta®, ..., a® ¢ RY andg < [Tj=1 wa»- Then a polynomiap € Py is
of type A(resp. R) if and only if pg € Py is of type Aresp. K).

Proof. By induction onn and by the following property (cf. Propositi@tt)

if b= (b1,...,by) € RV, then a polynomiat € Py is of type A (resp. A) if
and only ifr (X1 + by, ..., Xy + by) € Py is of type A (resp. A),
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we are reduced to showing thate Py is of type A (resp. A) if and only if pwg € Py is
of type A (resp. A).

Supposg € Py isoftype R. LetS = (51, ..., Sy) € LED)N be acommuting-tuple
such that pwp)(S) =0, i.e.

PSS +---+53) =0. (51)
Multiplying both sides of (51) by (S)* we get

(P($)SV (P(S)S1) + - - + (p(S)SN)* (p(S)Sy) = 0.
This in turn implies that

PSS =0, k=1,..., N. (52)

If » € Py, then there exist, .. ., ry € Py such that = r(0) + Z,ﬁ’:l X rr. Hence, by
(52), we have (S)p(S) = r(0) p(S). Substituting = p* leads to

p(S)*p(S) = p(0)p(S). (53)

If p(0) = 0, then, by (53), 0= p(S)*p(S) and consequently(S) = 0. Sincep is of
type 2, we arrive at the desired conclusion. On the other hang(@ # O, then we

can assume without loss of generality thgD) = 1. This, when combined with (53),

implies 0* = Q = 02, whereQ 2 p(S). It is now a matter of routine to show that

D = N(Q) ® OQ(D), whereN(Q) = {f € D : Q(f) = 0}. SinceS,Q = Q0S; for
alk =1,..., N, we conclude that both/'(Q) and Q(D) are invariant for eacls; and
consequently

Sk = Sklvo) @ Sklompy, k=1,...,N. (54)

Sincep is of type R and p(S1ln(g), - --» SNIN(0) = 0, there exists a Hilbert space
K 2 N(Q) andN-tuple (T, ..., Ty) of spectrally commuting self-adjoint operators in
K such thatSy|zrg) € Ti for k = 1,..., N. It follows from (52) thatSi| o) = O for
alk =1,..., N. Hence(Ty ® 0, ..., Tn @ 0) is anN-tuple of spectrally commuting
self-adjoint operators, which by (54) exter@shere 0 is understood as the zero operator
defined on the Hilbert space completion@¢D).

To make the above proof valid for type A, we only have to show th&tisfcyclic, then

S0 isS|n(o) = (S1ln)s - - -5 SnIa(0))- Indeed, ifeis a cyclic vector ofS, then
{r($)Up — Qe:r e Pn}={Up — Q)r(S)e : r € Py}
=(Ip — Q)(D) = N(Q),

which means that/p — Q)e is a cyclic vector ofS|zrg).
The “if" part of the conclusion follows from Proposition 48]

Substituting the polynomiap = 1 (which is of type & as a member ofPy) into
Lemma 49, we see thﬂ’}:1 w,» € Py is of type A. Making use of the property stated
in Lemma 49, we prove a similar feature of set ideals of type C.
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Theorem 50. Assume thap € Py is of type A andd is a finite subset oR". Then the
x-idealZ(Z, U 4) in Py is of type C. In particulary-idealsZ(Z,) andZ(4) in Py are of
type C.

Proof. If 4 =, then it suffices to apply Propositid2. Suppose now that = {aV, ...,
a®™}. Then clearlyZ, U 4 = Z,,, whereq = [%_; w,q. This, when combined with
Lemma 49 and Proposition 42, implies that thedeal Z(Z, U 4) in Py is of type C.
Substitutingp = 1 yields thex-idealZ(4) in Py is of type C. O

Remark 51. We show independently of Theorem8 and 50 that for any finite subsgt

of RV, thex-ideal V £ Z(4) in Py is of type C. By Lemma 38, dinPy/V < oo. LetL
be a positive definite linear functional @ such thaty; = V. Plainly,

Pn/V xPx/V 3@+ V.r+V)— (g+V,r+ V)L L Lgr*) eC

is a well defined inner product iRy / V. Define the multiplication operatofy, ..., Sy on
Py/VviaSi(g+V)=Xjqg+Vforqge Pyandj=1,...,N.ThenS = (S1,..., Sn)is
acommutindN-tuple of bounded self-adjoint operators on a finite-dimensional Hilbert space
Py/ V. LetE be the joint spectral measure®&nd sefu(-) = (E(-)(X°+ V), X0+ V).

Then

Lg)=(q+ V. X+ V)L = (@) (X°+ V), X+ V), = /RN g du (55)
for everyq € Py, which completes the proof.

To get the feeling of the operator theory approach promoted in our paper, let us discuss
the positive polynomiab = X2X3(X2+X3—1)+1 € Py, whichis nota sum of squares of
real polynomials (cf[4, Lemma 6.3.1]; see also [2] for an affirmative answer to the related
Hilbert's 17th problem). We show independently of Theorem 43 pHatof type A. Take
a commuting pais = (51, S2) € L%(D)? such that

S282(1 — §2 —$3) = I. (56)
Then clearlyS; and S, are bijections. It follows from (56) that

I1S1S2h1% = [|A]|? + 1S{S2hlI? + IS3S1h1%, € D. (57)
Consequently, we have

[ S1S2hll = [I2]l,  h € D. (58)

Applying once more (57), we géitS; (S1.52h) || < [|S182k || for h € D andj = 1, 2. Since
518> is a bijection, we conclude thdtS;i|| <|/k| for h € D andj = 1,2. Hence
|1S1S2h|| < |\k| for h € D. This and (58) lead tdS1S2k| = ||| for h € D. The last
equality and (57) implys?s, = $25; = 0. HoweverS; and S, are bijections, and so
D = {0}, which completes the proof of our claim.
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11. Existence of orthogonalizing measures: instances

Let us now take a quick look at the (quasi)-orthogonality of sequences of column poly-
nomials. Suppos¥ is a proper«-ideal in Py andL is a Hermitian linear functional on
Py such thatV = V;. Furthermore, IetQk}Zio be a rigidV-basis ofPy composed of
real column polynomials such thatg = 1 andL(Q,-ij) = Oforalli # j. Then, by
Proposition21, the mapping

Py/VXPN/V3@+V.r+V)— (g+V.r+ V), L Ligr*)eC (59)

is a well defined sesquilinear form @/ V (becausé’ C ker L) for which there exists a
rigid V-basis{Pk}ZLO of Py composed of real column polynomials such thép; PJ’F) =0
foralli # j andL(PyP;) is a non-singular diagonal real matrix for every 0, xy (the
sesquilinear form-, —) ;. is a counterpart of the quasi-inner product defined in the paragraph
preceding Corollar28). Assuming moreover than}fLO is L-orthonormal, we see that
(-, =)z is an inner product oPy/V and{Qk},fio itself can play the role of the above
{Pi}iY, (use (43) and Theorem 36). What is more, the{get V : ¢ € Yy O} is an
orthonormal basis of the Hilbert space completiorPaf/ V with respect ta-, —) ;. This
enables us to put-orthonormality into the context of pure Hilbert space theory. Suppose
further thatl = L, with someu € Miy. Then, by Proposition 43, = Z(suppw) = Z(Z,)
with somep € Py. Hence foraly,r € Py,q =r a.e[ulifandonlyifg+V =r+V,
which in turn implies thaPy / V can be identified with a subspaceff(y).

Letusturntothe assumption tH@k},’(‘LO isarigidV-basis ofPy, whichisL-orthonormal,
and V. C ker L. Define the multiplication operatordfy,, ..., Mx, on Py/V via
My (q+V) = X;q+Vforq € Pyandj € 1, N.ltiseasily seenthaty,, ..., Mx,) €
LEPn/ V)N is a cyclic commutingN-tuple with the cyclic vectok© + V, wherePy/V
is equipped with the inner produ¢t —).. If the N-tuple(My,, ..., Mx,) has an ex-
tension to arN-tuple T = (T4, ..., Ty) of spectrally commuting self-adjoint operators
acting possibly in a larger Hilbert space, then the functiangl induced by the measure
u() = (EGOX%+ V), X+ V) e My, whereE stands for the joint spectral measure
of T (see (55); the converse implication is true as well, cf. [13]). Hgnoghonormalizes
the sequenC({er},’:L0 and, by Theorem 36V = V. The following proposition sheds
more light on the role played by the notion of type A in producing joint spectral measures
appearing above.

Proposition 52. LetV be a propek-ideal inPy, L : Py — C be alinear functional such
thatV C ker L, and{Qk},’:Lo be an L-orthonormal sequence of real column polynomials

(with Qo = 1), which is a rigid V-basis ofPy. Then for everyp € Py, (p) € V if and
only ifp(MXl, ey MXN) =0.

Proof. If (p) € V, then manifestly

p(Mx,,....Mx,)r+V)=pr+V =0+V forallrePy.
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Conversely, ifp(Mx,, ..., Mx,) = 0, then
p+V=pMy,,....Mx,)(X°+V) =04V

and so the result follows.

An obvious consequence of Propositis? and Theorem 36 is the following: jif € Py
is of typeA, then every-idealV in Py containing(p) is of typeC (this has already been
stated in Proposition 48).

In what follows we shall focus attention on circumstances under which the three term
recurrence relations modulo an ideal automatically guarantee existence of an orthonormal-
izing measure. Our technique allows to retrieve the well-known Favard theorem (cf. [10]).

Theorem 53. If {pi}2, € P1 is a sequence of real polynomials such tpat= 1, then
the following two conditions are equivalent:

(i) degpx = k for all k € N and there exists a measupec 9i; which orthonormalizes

{PrIios
(ii) for everyk € N, there existy; € R\ {0} andb; € R such that

df df
Xpr = axpiy1+ bk px + a—1pr—1, wherea_3 =1 and p_1=0.

If (i) holds,thensuppu is infinite.

Proof. The equivalence (i)« (ii) can be deduced from Theo@bn(with V. = {0} and
L = L), Proposition 42 and (50). If (i) holds, then by Theorem Bg, = {0}, hence by
part (ii) of Proposition 39, suppis infinite. [

If p € Py is of type A, then Theorem 36 with = Z(Z,,) becomes a particularly useful
tool for producing measures orthonormalizing sequences of column polynomials satisfying
condition (B). This can be considered as a far-reaching generalization of the Favard theorem.
From this point of view, the knowledge of various classes of polynomials of type A seems
to be of great importance. We now provide a brief overview of known classes of such
polynomials not covered by Theorem 43. By [24, Theorem 5.4], every non-zero polynomial
p € R of degree at most 2 is of type A. An immediate adaptation of [26, Proposition 3] to
our context shows that all polynomigise P, of the formp = X5 + g(X1) withg € P1
are of type A. Inturn, Theorem 52 of [27] asserts tlmé 1+ (X1+iX2)q(X1, X2) € P2
with ¢ € P is of type R. Bisgaard [6] completely characterized polynomials of the form
p=X*—XP e Py, o pe NV, which are of type A The paper [28] contains numerous
examples of polynomialg of type A including

p=X1+1X2)q(X1, X2)X3 — 1€ Ps3,
whereg € P>, and

p=A+qXD)?+ -+ gXHr(Xa, ..., Xi) X1 — 1 € Prga,
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whereqs, ..., gr € R1 are polynomials of degree at least 1 and Ry (see[28, Remark
42] for more examples).
Despite the above instances, one may still find ideals which are not of type C.

Example 54. We indicate a propemon-zerck-idealV in Py for which there exists a rigid
V—basis{Qk},fLO of Py (with Qo = 1) composed of real column polynomials satisfying
condition (B) of Theoren36 and such that the (positive definite) linear functidndéfined

by (32) is not a moment functional. St = 2 andp = (X2 — X%)Xz € P,. By [24,
Theorem 6.3], the polynomigd is not of type A, and so there exists at least one positive
definite linear functiondl onP, vanishing on p), which is not a moment functional. Then,

by Proposition 42, the ided! 2y, is not of type C. A9/, is the greatest ideal contained
inker L andL|, = 0, we conclude that

{0}G(p) =T(Z,) SV S ker LGP,

(the equality(p) = Z(Z)) is a consequence {4, Lemma 6.1]). We do not know whether

it may happen thaV; = Z(Z,) for some such.. However one can prove that for every
positive definite linear functiondl on P,, which is not a moment functional and which
vanishes or{p), V is a setideal if and only iV’;, = Z(Z,). Only the “only if” part has

to be justified. Suppose tha}, = Z(4) for somed € R2. There is no loss of generality
in assuming that! is closed in the Zariski topology and consequently that it is of the form
4 = Z, with someg € P,. SinceZ(Z,) € V,, we getd C Z,,. By Theorem 50 the set

is infinite. Hence at least one of the two sét3 Zy, and4N Zx,-x2 is infinite. Notice that
the polynomials{, € Pp andX > — X% € Py are both of type A (use the argument contained
in the paragraph preceding Proposition 46)41f sz—xf is infinite, theng (x, x?) = 0

for infinitely many realx (becausel = Z,) and hencey (x, x?) = 0 for all x € R, which
means thaly, x2 C 4. If the setd’ £ A\ Zx,-x2 is finite, then by Theorem 50 the

x-ideal V, in P, is of type C, a contradiction. lfi’ C Zy, is infinite, then we must have
Zx, S 4, which in turn implies thatz, = Zy, U ZXz—X% CACZ, AN Zy,is
infinite, then the proof of the equality,, = 4 runs along similar lines.

The following two (surprising) questions are motivated by Example 54 (the idgal
appearing therein is not known to be a set ideal).

Question 3. Is every non-zero set idedlin Py of type C?

Question 4. Is the zero ideal irPy of type C?

An answer in the negative to Questidimplies an answer in the negative to Question 3
(with a greateN). Indeed, ifL : Py — C is a positive definite linear functional satisfying
Vi = {0} which is not a moment functional, then the linear functiobal: Py+1 — C
given by

Li(p) = L(p(X1,...,Xn,0)), pePyy1,
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is positive definite, it is not a moment functional abd, = (Xy+1) = Z(4), where
A={(x1,...,xN+1) € RN+1. xy+1 = O}

Example 55. Let (A), (B) be as in Theorerh8 and (X), (B*) be as in Remark 27. Denote
by (A*) the version of (A) in which the assumption on the rigidity{gfi};_, is simply
dropped. We show that the implication*h=(B*) (and consequently (&)=-(B)) is no
longer true. To be more precise, we will construct a moment functibneP, — C and
aV-basis{Q;}72 , of P, composed of real polynomials satisfying* (B-ii) and (B-iii),
but not satisfying (A) and (B-i).

Setp = Xo— X% € P2 and take any € M1 such thatv(R) = 1 and supp = R. Define
the probability measurg € i, via

(o) = /IRE 1,(t,1%)dv(r)  for all Borel subsets of R?. (60)

SetL = L, (thusL is automatically positive definite). Using (60), one can show that
suppu = Z,. Hence, by Proposition 39, we have

V £1(2,) = Z(suppw) = V1.
Itis amatter of direct verification thek’X}>°  is aV-basis of,. As a consequencgy 12

is a basis off < lin {X9, X1, X2 ...} (2P1), andP; is the direct sum o¥ andF. This,
(43) andV = V. imply that the mapping® x F > (p,q) — (p.q)1 £ L(pg*) € C

is an inner product offr. Applying the Gram-Schmidt orthonormalization procedure to
{x9, x1, x2, ...} with respect to the inner product, —),, we get a basi§Q}2, of

F composed of real polynomials such thay = 1 (see Remark 33), de®;, = i and
L(Q;Qj) = o;j foralli, j e N. This, in turn, implies thafQ}?2 , is aV-basis ofP,
which isL-orthonormal. Notice thafy (0) = 1 anddy (k) = 2 for all k > 1, because

Xk

>y =x° and Z’Y:[xx%l
142

} fork>1. (61)
Thus{ Q¢ };2, satisfies (A*), (B-ii) and (B-iii), but it does not satisfy (A

Since the sequend@;};2, is L|p,-orthonormal, we infer from Theores8 that there
exist sequencelsy } 72, and{b}72 , of real numbers such that

X10k = ax Op+1 + b O +ar-10k—1 and ar #0 forallk e N, (62)

wherea_1 2o andQ_1 2 0. A direct calculation based on (62) shows that

X20k=X1(X10k) = arar+10x+2 + ar (bg + brr1) Qi1
+(@? 1 4 a? + b)) Ox + ar—1(br—1+ br) Qk—1
‘ap—2ar-1Q0k-2, keN, (63)
wherea_» = b_1 Lo andQ_» Lo. By (62),arar+1 # 0 for all k € N, and hence, by
(63),{ O}, does not satisfy condition (B-i) with respectMo
One may consider yetanother column represent@@t}\,fio ofthese{Qoq, 01, 0o, ...}
given by 0o = Qo and Oy = [Qar—1, Q1" for k>1. Itis obvious tha{ Q¢ )22, is aV-
basis ofP;, which isL-orthonormal, and(@k) =dy (k) forall k € N. It follows from (62)
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and (63) that 0} , satisfies (B-i), (B-ifi) and (B-iv) with respect tv/. Since de@; = 2k
fork € N, {Qr}72, is not a rigidV-basis ofP,. However, it is possible to find a sequence
{Qk}}ﬁo of real column polynomials satisfying (A) such t@,{;é Oy fork € N. One way

of obtaining this is to apply (40). The other one is to apply the explicit Gram—Schmidt
orthonormalization procedure described in Remark 33 to the sequence (cf. (61))

X% X1, X2 || X1X2, X2 |,

X1X3, X3

g v e

whose entries are equivalent modildo the entries of the following sequence:

0 1 y2 3 y4 5 y6
X9, xbx3 || x3,x$ | x5, x8 ...

12. Existence of orthogonalizing measures: matrix approach

Another way of ensuring the existence of orthonormalizing measures is to study mul-
tiplication operators\x,, ..., My, introduced in Sectiodl. Assume thay¥ is a proper
x-ideal InPy and{Qk},fLO is a sequence of real column polynomials (Wil = 1) satis-
fying condition (B) of Theorem 36. By this theorem, the seque{@g,’go and the positive
definite linear functional defined by (32) fulfil condition (A) of Theorem 36. The space
Pwn/V is equipped with the inner produ¢t —) given by (59).

Consider first the case afy < oo. It follows thatPy /V is a finite-dimensional Hilbert
space. Consequently/x,, ..., Mx, are commuting bounded self-adjoint operators and
as such they admit a joint spectral measure, which yields the required orthonormalizing
measure. In particulaly = 1 andV # {0} imply vy < oo (indeed, fixingp € V \ {0} and
applying the division algorithm to eaeh e P1, we find r € P71 such that deg < degp
andg —r € (p) € V). As{0} C P1 is of type C (cf. Theorem 53), we conclude that every
x-ideal inP1 is of type C.

We now concentrate on the casge = oo, which requires much more involved techniques.
Letus arrange the séj + V : ¢ € (J;— Q«} in an orthonormal basigy; + V12, of the
Hilbert space completion d®y /V (relative to(-, —) ) respecting the order of columns as
well as the order of entries in each column. Then for eyesy 1, ..., N, the multiplication
operatorMx; € LZ(Pn/V) may be represented by the infinite symmetric matrix

r BO,j AO,j 0 0 T
T
AO,j By,j A1, 0
el T . o
Sj = 0 Al‘j By A2

T
0 0 A2,j Bg,j
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with respect to the orthonormal bagig + V172 5, whereA, ; andBy ; are the real matrices
appearing in (B-i) of Theorer®6. In other wordsM ; is unitarily equivalent to the matrix

operatorsS; defined in¢? by:
D(S;) = €5, Sj(ao, a1,az, ...) = (Sjlao, a1, az, .. T
for (ap, a1, a»,...) € E%,
whereD(S;) stands for the domain ¢f; andﬁ% is the space of all complex sequences with

finite number of non-zero entries. It is clear that the operatgs, . .., Mx, commute.
This implies thatSy, ..., Sy commute, which is equivalent to

ApiAk+1,j = Ag, jAr+1,i,
Ap,iBk+1,j + Br,iAk,j = Ak, jBi+1,i + Br,jAx,is
T T T T
Ap_1,iAk—1,j + BiiBi,j + AkiAy j = Ag_q jAk—1,i + Bk, jBri + Ak jAg i

foralli, j € 1, N andk € N.

We are now in a position to formulate a criterion for the existence of orthonormalizing
measures written in terms of matricdg ; and By ;. Special cases of Theorem 56 can
be found in [15,30] (in the latter the essential argument for spectral commutativity is not
provided).

Theorem 56. Let V be a propek-ideal in Py with xy = oo and{Qy}72 , be a sequence

of real column polynomialéwith Q¢ = 1) satisfying conditior{B) of Theoren86.Assume
that there exists a sequengs, }2  of positive real numbers such that,” =0

and for everyn >0,

N N
cp Z max ZAnfl,jAn,j > ZAn,jAn+l,j ,

N

Z(Bn,jAn,j + An,jBn+lJ)

j=1
Then there exists a measyre= 9ty which orthonormalize$Qy};2 , and which satisfies
the equalityZ(suppu) = V.

Proof. We know that the matrix operatofy, ..., Sy € L‘;(Z%) commute and” < Sf +

-+~ + 82 is a positive operator with the matrix representation
[ Coo Co1 Co2 O O 7
Cg1 €11 C12 C13 0O

C{, €1, Co2 Co3 Cou

0 CJT.B ng C33C34 -

T T t.
0 0 Coa C3,4 Cy4
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whereC,,, = Zy:l(AnT_l,jAn_l,j + B2 + A,l’jA;r_/.) with A_; ; = 0 and

N N
Crl$n+l = Z(Bn,jAn,j + An,j Bn+l,j), Cn,n+2 = Z An,jAn+l,j, ne N.
j=1 j=1
(64)

Forn € N, we set
7,(C)=max{|C; ;| : 0<i<n, j=n+1}
=maxX{|Cp_1.t1lls |Cans2ll, [Comsall} (C_1.1=0).

By our assumption and (64),,(C) <c, for all n > 0. Adapting Theorem 1 of [18] to the
context of matrix operators via the discussion following Proposition 3.1 of [17] and applying
it to C, we conclude that the operatsf + --- + S is essentially self-adjoint. Hence,
according to the Nelson criterion (cf. the commutative part of Theorem 5 of [21]), the
closures ofy, . .., Sy, considered as operatorséify are spectrally commuting self-adjoint
operators. This implies that ti-tuple(Mx, ..., Mx,) has an extension to attuple of
spectrally commuting self-adjoint operators. In view of Section 11, there exists a measure
u € My which orthonormalize§ 0« )32, and which satisfies the equalinyL# = V.
Applying Proposition 39 completes the proof

The question of (essential) spectral commutativity of matrix operatgrs.., Sy can
be settled in two ways: either by applying Theorem 1 of [18] and Nelson’s criterion to the
whole system of operatoi$, ..., Sy, like in Theorem 56, or by applying them to each
pair (S;, S;), 1<i < j< N, separately, which leads to Theorem 57 below. It is not known
which method is better (probably it depends on the circumstances). However, if we consider
finite systems of operators with a common invariant domain, then according to Remark 28
of [28], Nelson'’s criterion for two operators implies that for several operators (recall that
6(2) is a common invariant domain fét, ..., Sy).

Theorem 57. Let V be a propes-ideal in Py with xy = oo and {Qy}2 , be a sequence
of real column polynomialéwvith Qg = 1) satisfying conditior{B) of Theoren86.Assume
that for any two integers j € 1, N withi < j there eX|sts a sequenbéﬂ |l 0 of positive
real numbers such thaf > o(c;))"1/2 = oo and ¢}’ max{an 1,anf, b.71 for every
n>0,where

df

arlzj |An,iAnt1,i + Ap ]An+1 j”
df
l] ”BnlAnl+An1Bn+1l+Bn1AnJ+An]Bn+l]”

Then there exists a measyre= 9ty which orthonormalize$Qy )2, and which satisfies
the equalityZ (suppu) = V
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